Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 18-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses the age-dependent epidemic models of transmissive diseases. The models consists of coupled partial differential equations for human population and ordinary differential equations for vector population. Based on these models, the problems of optimal control of funding level of programs to prevent spread of infections were built. The combined minimization both count of infected human population and founding level of disease transition prevention programs was selected as a target of optimization. These two criterias conflict and to resolve this contradiction in this paper using the approach of weight coefficients. Unfortunately, the problem is nonlinear in this statement and development of methods, more effective than widely known gradient methods or methods based on Pontryagin maximum principle, turned out to be rather nontrivial. For this reason this paper assumes that number of infected vectors is a constant. This simplification allow us to generalized original nonlinear models in the optimal control problem with linear dynamic system. For this problem accurate formulas of increment of cost functional and numerical method based on these formulas are built. These methods are more effective than commonly known standard methods because allows to improve control by solving one Cauchy problem. Furthermore, these methods are capable of improving extreme and degenerate controls.
Keywords: optimal control, accurate formulas of increment of cost functional, age-dependent epidemic models, transmissive diseases.
@article{IIGUM_2015_14_a1,
     author = {R. M. Batalin and V. A. Terletskiy},
     title = {Optimal control in epidemic models of transmissive diseases with {SEI-SEIR} systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {18--30},
     year = {2015},
     volume = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/}
}
TY  - JOUR
AU  - R. M. Batalin
AU  - V. A. Terletskiy
TI  - Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 18
EP  - 30
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/
LA  - ru
ID  - IIGUM_2015_14_a1
ER  - 
%0 Journal Article
%A R. M. Batalin
%A V. A. Terletskiy
%T Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 18-30
%V 14
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/
%G ru
%F IIGUM_2015_14_a1
R. M. Batalin; V. A. Terletskiy. Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 18-30. http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/

[1] Vasilev F. P., Methods of optimization, Faktorial Press, M., 2002

[2] Srochko V. A., Iterative methods for solving optimal control problems, Fizmalit, M., 2000

[3] Terletskiy V. A., “Generalized solution for one-dimensional semi-linear hyperbolic systems with mixing conditions”, Izvestiya vuzov. Matematika., 2004, no. 12, 82–90

[4] G. Gupur, Xue-Zhi Li, Guang-Tian Zhu, “Threshold and Stability Results for an Age-Structured Epidemic Model”, Computers and Mathematics with Applications, 42:6 (2001), 883–907 | MR | Zbl

[5] F. Hoppensteadt, “An age dependent epidemic model”, Journal of the Franklin Institute, 297:5 (1974), 325–333 | DOI | Zbl

[6] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics, and Epidemics, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1975 | MR | Zbl

[7] H. Inaba, “Threshold and stability results for an age-structured epidemic model”, J. Math. Biol., 28:4 (1990), 411–434 | DOI | MR | Zbl

[8] G. Macdonald, “The measurement of malaria transmission”, Proc. R. Soc. Med., 48:4 (1955), 295–302

[9] T. Park, Age-dependence in epidemic models of vector-borne infections, The University of Alabama, Huntsville, 2004 | MR

[10] R. Ross, Report on the prevention of malaria in Mauritius, E. P. Dutton Company, N.Y., 1908

[11] R. Ross, “The logical basis of the sanitary policy of mosquito reduction”, Science, 22:570 (1905), 689–699 | DOI

[12] R. Ross, The prevention of malaria, John Murray, London, 1910