@article{IIGUM_2015_14_a1,
author = {R. M. Batalin and V. A. Terletskiy},
title = {Optimal control in epidemic models of transmissive diseases with {SEI-SEIR} systems},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {18--30},
year = {2015},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/}
}
TY - JOUR AU - R. M. Batalin AU - V. A. Terletskiy TI - Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 18 EP - 30 VL - 14 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/ LA - ru ID - IIGUM_2015_14_a1 ER -
%0 Journal Article %A R. M. Batalin %A V. A. Terletskiy %T Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 18-30 %V 14 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/ %G ru %F IIGUM_2015_14_a1
R. M. Batalin; V. A. Terletskiy. Optimal control in epidemic models of transmissive diseases with SEI-SEIR systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 18-30. http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a1/
[1] Vasilev F. P., Methods of optimization, Faktorial Press, M., 2002
[2] Srochko V. A., Iterative methods for solving optimal control problems, Fizmalit, M., 2000
[3] Terletskiy V. A., “Generalized solution for one-dimensional semi-linear hyperbolic systems with mixing conditions”, Izvestiya vuzov. Matematika., 2004, no. 12, 82–90
[4] G. Gupur, Xue-Zhi Li, Guang-Tian Zhu, “Threshold and Stability Results for an Age-Structured Epidemic Model”, Computers and Mathematics with Applications, 42:6 (2001), 883–907 | MR | Zbl
[5] F. Hoppensteadt, “An age dependent epidemic model”, Journal of the Franklin Institute, 297:5 (1974), 325–333 | DOI | Zbl
[6] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics, and Epidemics, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1975 | MR | Zbl
[7] H. Inaba, “Threshold and stability results for an age-structured epidemic model”, J. Math. Biol., 28:4 (1990), 411–434 | DOI | MR | Zbl
[8] G. Macdonald, “The measurement of malaria transmission”, Proc. R. Soc. Med., 48:4 (1955), 295–302
[9] T. Park, Age-dependence in epidemic models of vector-borne infections, The University of Alabama, Huntsville, 2004 | MR
[10] R. Ross, Report on the prevention of malaria in Mauritius, E. P. Dutton Company, N.Y., 1908
[11] R. Ross, “The logical basis of the sanitary policy of mosquito reduction”, Science, 22:570 (1905), 689–699 | DOI
[12] R. Ross, The prevention of malaria, John Murray, London, 1910