Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ Chevalley algebra of symplectic type
The Bulletin of Irkutsk State University. Series Mathematics, Tome 13 (2015), pp. 41-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study automorphisms of the nilpotent subalgebra $ N \Phi (K) $ of the Chevalley algebra associated with a root system $\Phi$ over associative commutative ring $ K $ with the identity. In the present paper the automorphism group $Aut \ (N\Phi(K))$ is described for the symplectic type.
Keywords: Chevalley algebra, Lie ring
Mots-clés : nilpotent subalgebra, automorphism.
@article{IIGUM_2015_13_a3,
     author = {A. V. Litavrin},
     title = {Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ {Chevalley} algebra of symplectic type},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {41--55},
     year = {2015},
     volume = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a3/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ Chevalley algebra of symplectic type
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 41
EP  - 55
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a3/
LA  - ru
ID  - IIGUM_2015_13_a3
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ Chevalley algebra of symplectic type
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 41-55
%V 13
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a3/
%G ru
%F IIGUM_2015_13_a3
A. V. Litavrin. Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ Chevalley algebra of symplectic type. The Bulletin of Irkutsk State University. Series Mathematics, Tome 13 (2015), pp. 41-55. http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a3/

[1] Bourbaki N., Groupes et algebraes de Lie, Paris, 1972 | MR

[2] Bunina E. I., “Automorphisms of Chevalley groups of some type over local rings”, Uspekhi matem. nauk, 62:5 (2007), 143–144 (in Russian) | DOI | MR | Zbl

[3] Levchuk V. M., “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra i logika, 29:3 (1990), 316–338 (in Russian) | MR

[4] Levchuk V. M., “Connections between the unitriangular group and certain rings. 2: Groups of automorphisms”, Sibirskiy matematicheskiy zhurnal, 24:4 (1983), 543–557 (in Russian) | MR | Zbl

[5] E. I. Bunina, A. V. Mikhalev, “Combinatorial and logical aspects of linear groups and Chevalley groups”, Acta Applicandae Mathematicae, 85:1–3 (2005), 57–74 | DOI | MR | Zbl

[6] Y. Cao, D. Jiang, J. Wang, “Automorphisms of certain nilpotent algebras over commutative rings”, J. Algebra, 17:3 (2007), 527–555 | MR | Zbl

[7] R. Carter, Simple groups of Lie type, Wiley and Sons, N.Y., 1972 | MR | Zbl

[8] J. Gibbs, “Automorphisms of certain unipotent groups”, J. Algebra, 14:2 (1970), 203–228 | DOI | MR | Zbl

[9] G. B. Seligman, “On automorphisms of Lie algebras of classical type. I; II; III”, Trans. Amer. Math. Soc., 92 (1959), 430–448 ; 94 (1960), 452–481 ; 97 (1960), 286–316 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl