@article{IIGUM_2015_13_a1,
author = {S. V. Kornev},
title = {The method of generalized integral guiding function in the periodic problem of differential inclusions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {16--31},
year = {2015},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a1/}
}
TY - JOUR AU - S. V. Kornev TI - The method of generalized integral guiding function in the periodic problem of differential inclusions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 16 EP - 31 VL - 13 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a1/ LA - ru ID - IIGUM_2015_13_a1 ER -
%0 Journal Article %A S. V. Kornev %T The method of generalized integral guiding function in the periodic problem of differential inclusions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 16-31 %V 13 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a1/ %G ru %F IIGUM_2015_13_a1
S. V. Kornev. The method of generalized integral guiding function in the periodic problem of differential inclusions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 13 (2015), pp. 16-31. http://geodesic.mathdoc.fr/item/IIGUM_2015_13_a1/
[1] Borisovich Yu. G., Gel'man B. D., Myshkis A. D., Obukhovskii V. V., Introduction to the theory of multivalued maps and differential inclusions, Librokom, M., 2011, 226 pp.
[2] Kornev S. V., Obukhovskii V. V., “On some versions of the theory of topological degree for nonconvex-valued multimap”, Trudy matematicheskogo fakulteta, 8, Voronezh State University, Voronezh, 2004, 56–74 (in Russian)
[3] Kornev S. V., Obukhovskii V. V., “On localization of the guiding function method in the periodic problem of differential inclusions”, Izv. vuzov. Matematika, 2009, no. 5, 23–32 (in Russian)
[4] Kornev S. V., “Nonsmooth integral guiding functions in the problem of forced oscillations”, Avtomatika i telemehanika, 2015, no. 9, 31–43 (in Russian) | MR
[5] Krasnosel'skii M. A., The Operator of Translation along the Trajectories of Differential Equations, Nauka, M., 1966, 332 pp. (in Russian)
[6] Krasnosel'skii M. A., Perov A. I., “On existence principle for bounded, periodic and almost periodic solutions to the systems of ordinary differential equations”, Dokl. Akad. Nauk SSSR, 123:2 (1958), 235–238 (in Russian) | MR | Zbl
[7] Finogenko I. A., “On differential equations with discontinuous right-hand side”, Izv. Irkut. gos. un-ta. Ser. Math., 3:2 (2010), 88–102 (in Russian)
[8] A. Bressan, “Upper and lower semicontinuous differential inclusions: A unified approach”, Nonlinear Controllability and Optimal Control, ed. H. Sussmann, Dekker, N.Y., 1990, 21–31 | MR | Zbl
[9] A. Bressan, “Differential inclusions without convexity: A survey of directionally continuous selections”, Proceedings of the First World Congress of Nonlinear Analyst. (Tampa, Florida, 1992), ed. Lakshmikantham V., Walter de Gruyter, 1996, 2081–2088 | MR
[10] A. Fonda, “Guiding functions and periodic solutions to functional differential equations”, Proc. Amer. Math. Soc., 99:1 (1987), 79–85 | MR | Zbl
[11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin, 2006, 556 pp. | MR | Zbl
[12] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–N.Y., 2001, 231 pp. | MR
[13] M. Kisielewicz, Differential inclusions and optimal control, Kluwer, Dordrecht; PWN Polish Scientific Publishers, Warsaw, 1991 | MR | Zbl
[14] S. Kornev, V. Obukhovskii, J. C. Yao, “On asymptotics of solutions for a class of functional differential inclusions”, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 34:2 (2014), 219–227 | DOI | MR | Zbl
[15] J. L. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. in Math., 40, Amer. Math. Soc., Providence, R.I., 1977
[16] J. Mawhin, J. R. Ward (Jr.), “Guiding-like functions for periodic or bounded solutions of ordinary differential equations”, Discrete and continuous dynamical systems, 8:1 (2002), 39–54 | MR | Zbl
[17] V. Obukhovskii, P. Zecca, N. V. Loi, S. Kornev, Method of guiding functions in problems of nonlinear analysis, Lecture Notes in Math., 2076, Springer, Berlin, 2013, 177 pp. | DOI | MR | Zbl
[18] T. Pruszko, “A coincidence degree for $L$-compact convex-valued mappings and its application to the Picard problem for orientor fields”, Bull. Acad. pol. sci. Sér. sci math., 27:11–12 (1979), 895–902 | MR | Zbl
[19] T. Pruszko, “Topological degree methods in multi-valued boundary value problems”, Nonlinear Anal.: Theory, Meth. and Appl., 5:9 (1981), 959–970 | DOI | MR
[20] E. Tarafdar, S. K. Teo, “On the existence of solutions of the equation $\mathcal{L}x\in Nx$ and a coincidence degree theory”, J. Austral. Math. Soc., A28:2 (1979), 139–173 | DOI | MR | Zbl
[21] A. Tolstonogov, Differential inclusions in a Banach space, Kluwer Academic Publishers, 2000, 302 pp. | MR | Zbl