Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation of so-called Ihm-quasiorder (defining a closure operator on subsets of direct powers of basic sets of universal algebras) with the such derived structures of these algebras as a lattices its algebraic subsets, lattices of its subalgebras, semigroups of its innere homomorphisms. We introduce the notion of 1-algebraic complete algebras and prove that for any least countinual algebra of countable signature exists its 1-algebraic complete extebsion of the same power as the algebra.
Mots-clés : Ihm-quasiorder
Keywords: algebraic sets, innere homomorphisms, 1-algebraic complete algebras.
@article{IIGUM_2015_12_a6,
     author = {A. G. Pinus},
     title = {Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {72--78},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 72
EP  - 78
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/
LA  - ru
ID  - IIGUM_2015_12_a6
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 72-78
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/
%G ru
%F IIGUM_2015_12_a6
A. G. Pinus. Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/