Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation of so-called Ihm-quasiorder (defining a closure operator on subsets of direct powers of basic sets of universal algebras) with the such derived structures of these algebras as a lattices its algebraic subsets, lattices of its subalgebras, semigroups of its innere homomorphisms. We introduce the notion of 1-algebraic complete algebras and prove that for any least countinual algebra of countable signature exists its 1-algebraic complete extebsion of the same power as the algebra.
Mots-clés : Ihm-quasiorder
Keywords: algebraic sets, innere homomorphisms, 1-algebraic complete algebras.
@article{IIGUM_2015_12_a6,
     author = {A. G. Pinus},
     title = {Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {72--78},
     year = {2015},
     volume = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 72
EP  - 78
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/
LA  - ru
ID  - IIGUM_2015_12_a6
ER  - 
%0 Journal Article
%A A. G. Pinus
%T Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 72-78
%V 12
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/
%G ru
%F IIGUM_2015_12_a6
A. G. Pinus. Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/

[1] Pinus A. G., “On the Quasiorder which is induced by the Innere Homomorphisms of the Universal Algebras and on the Algebraic Closure Operator on the Subsets of these Algebras”, Sib. math. Journal, 56:3 (2015), 629–636

[2] Plotkin B. I., “Some Notions of Algebraic Geometry in Universal Algebra”, Algebra and Analisis, 9:4 (1997), 224–248 | Zbl

[3] Pinus A. G., On Ihm-permitted and Ihm-banned Quasiorders on Algebras

[4] Pinus A. G., Derived Structures of Universal Algebras, NGTU-Publ., Novosibirsk, 2007

[5] M. A. Dickman, “Larger Infinitary Languages”, Model-Theoretic Logics, Springer-Verlag, N.Y., 1985, 317–363 | MR