Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78
Voir la notice de l'article provenant de la source Math-Net.Ru
The relation of so-called Ihm-quasiorder (defining a closure operator on subsets of direct powers of basic sets of universal algebras) with the such derived structures of these algebras as a lattices its algebraic subsets, lattices of its subalgebras, semigroups of its innere homomorphisms. We introduce the notion of 1-algebraic complete algebras and prove that for any least countinual algebra of countable signature exists its 1-algebraic complete extebsion of the same power as the algebra.
Mots-clés :
Ihm-quasiorder
Keywords: algebraic sets, innere homomorphisms, 1-algebraic complete algebras.
Keywords: algebraic sets, innere homomorphisms, 1-algebraic complete algebras.
@article{IIGUM_2015_12_a6,
author = {A. G. Pinus},
title = {Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {72--78},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/}
}
TY - JOUR AU - A. G. Pinus TI - Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 72 EP - 78 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/ LA - ru ID - IIGUM_2015_12_a6 ER -
%0 Journal Article %A A. G. Pinus %T Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 72-78 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/ %G ru %F IIGUM_2015_12_a6
A. G. Pinus. Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 72-78. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a6/