Mots-clés : Jordan chains
@article{IIGUM_2015_12_a5,
author = {B. V. Loginov and Yu. B. Rousak and L. R. Kim-Tyan},
title = {Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal {Jordan} chain of length two and~three},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {58--71},
year = {2015},
volume = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/}
}
TY - JOUR AU - B. V. Loginov AU - Yu. B. Rousak AU - L. R. Kim-Tyan TI - Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 58 EP - 71 VL - 12 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/ LA - ru ID - IIGUM_2015_12_a5 ER -
%0 Journal Article %A B. V. Loginov %A Yu. B. Rousak %A L. R. Kim-Tyan %T Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 58-71 %V 12 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/ %G ru %F IIGUM_2015_12_a5
B. V. Loginov; Yu. B. Rousak; L. R. Kim-Tyan. Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 58-71. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/
[1] Vainberg M. M., Trenogin V. A., Theory of branching of solutions of non-linear equations, Noordhoof International Publishing, Leyden, 1974 | MR | MR | Zbl
[2] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl
[3] Arnold V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, M., 1999
[4] Shui-Nee Chow, Chengzhi Li, Duo Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994, 484 pp. | MR | Zbl
[5] Loginov B. V., Rousak Yu. B., Kim-Tyan L. R., “Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications”, Bulletin of South-Ural University, Series Mathematics, 2015, no. 4
[6] W. Marszalek, “Fold points and singularity induced bifurcation in inviscid transonic flow”, Physics Letters A, 376:28–29 (2012), 2032–2037 | DOI | Zbl
[7] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, “A simple global characterization for normal forms of singular vector fields”, Physica D, 29:1–2 (1987), 95–127 | DOI | MR | Zbl