Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three
The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Standard methods of normal form construction are adapted for degenerate differential equations in the case of the existence of maximal length Jordan chain. For $n=2$ and $3$ examples are considered. Some of indicated normal forms are obtained for non autonomous systems at the usage of determined in the article differential Jordan chains.
Keywords: degenerate differential equations, normal forms, differential Jordan chains.
Mots-clés : Jordan chains
@article{IIGUM_2015_12_a5,
     author = {B. V. Loginov and Yu. B. Rousak and L. R. Kim-Tyan},
     title = {Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal {Jordan} chain of length two and~three},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {58--71},
     year = {2015},
     volume = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/}
}
TY  - JOUR
AU  - B. V. Loginov
AU  - Yu. B. Rousak
AU  - L. R. Kim-Tyan
TI  - Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 58
EP  - 71
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/
LA  - ru
ID  - IIGUM_2015_12_a5
ER  - 
%0 Journal Article
%A B. V. Loginov
%A Yu. B. Rousak
%A L. R. Kim-Tyan
%T Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 58-71
%V 12
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/
%G ru
%F IIGUM_2015_12_a5
B. V. Loginov; Yu. B. Rousak; L. R. Kim-Tyan. Normal forms of the degenerate differential autonomous and non autonomous equations with the maximal Jordan chain of length two and three. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 58-71. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a5/

[1] Vainberg M. M., Trenogin V. A., Theory of branching of solutions of non-linear equations, Noordhoof International Publishing, Leyden, 1974 | MR | MR | Zbl

[2] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl

[3] Arnold V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, M., 1999

[4] Shui-Nee Chow, Chengzhi Li, Duo Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994, 484 pp. | MR | Zbl

[5] Loginov B. V., Rousak Yu. B., Kim-Tyan L. R., “Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications”, Bulletin of South-Ural University, Series Mathematics, 2015, no. 4

[6] W. Marszalek, “Fold points and singularity induced bifurcation in inviscid transonic flow”, Physics Letters A, 376:28–29 (2012), 2032–2037 | DOI | Zbl

[7] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, “A simple global characterization for normal forms of singular vector fields”, Physica D, 29:1–2 (1987), 95–127 | DOI | MR | Zbl