Numerical solution of the linearized Oskolkov system
The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Difference scheme is constructed for the numerical solution of the linearized Oskolkov model for Kelvin–Voigt fluid. The approximation of the scheme with the first order, stability and convergence has been proven. Problem-oriented programs complex is worked out for the numerical solution of the corresponding problem. Сomputing experiment was realized by means of the complex.
Keywords: Kelvin–Voight fluid, Oskolkov system of equations, numerical solution of initial boundary value problem, difference scheme stability, difference scheme convergence.
@article{IIGUM_2015_12_a2,
     author = {P. N. Davydov and M. V. Plekhanova},
     title = {Numerical solution of the linearized {Oskolkov} system},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {23--34},
     year = {2015},
     volume = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a2/}
}
TY  - JOUR
AU  - P. N. Davydov
AU  - M. V. Plekhanova
TI  - Numerical solution of the linearized Oskolkov system
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2015
SP  - 23
EP  - 34
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a2/
LA  - ru
ID  - IIGUM_2015_12_a2
ER  - 
%0 Journal Article
%A P. N. Davydov
%A M. V. Plekhanova
%T Numerical solution of the linearized Oskolkov system
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2015
%P 23-34
%V 12
%U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a2/
%G ru
%F IIGUM_2015_12_a2
P. N. Davydov; M. V. Plekhanova. Numerical solution of the linearized Oskolkov system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 23-34. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a2/

[1] Demidenko G. V., Upsenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York–Basel, 2003 | MR | MR | Zbl

[2] Zvyagin V. G., Turbin M. V., “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, Journal of Mathematical Sciences, 168:2 (2010), 157–308 | DOI | MR | Zbl

[3] Kalitkin N. N., Numerical methods, BHV-Peterburg, SPb., 2011, 592 pp. (in Russian)

[4] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Ju. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, M., 2007, 734 pp. (in Russian)

[5] Oskolkov A. P., “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids”, Proceedings of the Steklov Institute of Mathematics, 179, 1989, 137–182 | MR | Zbl

[6] Davydov P. N., Plehanova M. V., Certificate of state registration of the computer number JEVM No 2014618458; the applicant and the right holder FGBOUVPO «Chelyabinsk State University»; No 2014616031; Statement 24.06.2014; state registration in the Register of Computer Programs 20.08.2014, ROSPATENT (in Russian)

[7] Fedorov V. E., Davydov P. N., “Degenerate semilinear evolution equations and nonlinear systems of hydrodynamic type”, Proceedings of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 19, no. 4, 2013, 267–278 (in Russian)