@article{IIGUM_2015_12_a0,
author = {M. V. Bulatov and L. S. Solovarova},
title = {On the loss of $L$-stability of the implicit {Euler} method for a linear problem},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--11},
year = {2015},
volume = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a0/}
}
TY - JOUR AU - M. V. Bulatov AU - L. S. Solovarova TI - On the loss of $L$-stability of the implicit Euler method for a linear problem JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 3 EP - 11 VL - 12 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a0/ LA - ru ID - IIGUM_2015_12_a0 ER -
%0 Journal Article %A M. V. Bulatov %A L. S. Solovarova %T On the loss of $L$-stability of the implicit Euler method for a linear problem %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 3-11 %V 12 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a0/ %G ru %F IIGUM_2015_12_a0
M. V. Bulatov; L. S. Solovarova. On the loss of $L$-stability of the implicit Euler method for a linear problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 12 (2015), pp. 3-11. http://geodesic.mathdoc.fr/item/IIGUM_2015_12_a0/
[1] Arushanyan O. B., Zaletkin S. F., Numerical Solution of Ordinary Differential Equations Using FORTRAN, Mos. Gos. Univ., M., 1990, 336 pp. | MR
[2] Dekker K., Verwer J. G., Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, 1984, 332 pp. | MR | MR | Zbl
[3] Novikov E. A., Shornikov Yu. V., Computer modeling of stiff hybrid systems, Publishing house NGTU, Novosibirsk, 2012, 450 pp.
[4] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Numerical Methods for Solving Stiff Systems, Nauka, M., 1979, 208 pp. | MR
[5] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996, 385 pp. | MR | Zbl
[6] Hall G., Watt J., Modern Numerical Methods for Ordinary Differential Equations, Oxford Univ., Oxford, 1976, 312 pp. | Zbl
[7] Chistyakov V. F., Algebraic Differential Operators with a Finite-Dimensional Kernel, Nauka, Novosibirsk, 1996, 278 pp. | MR
[8] Chistyakov V. F., “Preservation of stability type of difference schemes when solving stiff differential algebraic equations”, Numerical Analysis and Applications, 4:4 (2011), 363–375 | DOI | Zbl
[9] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2008 | MR | Zbl
[10] G. Dahlquist, “Convergence and stability in the numerical integration of ordinary differential equations”, Math. Scand., 4 (1956), 33–53 | MR | Zbl
[11] R. März, “Differential-algebraic systems anew”, Appl. Numer. Math., 42 (2002), 315–335 | DOI | MR | Zbl