@article{IIGUM_2015_11_a7,
author = {S. V. Solodusha},
title = {Application of numerical methods for the {Volterra} equations of the first kind that appear in an inverse boundary-value problem of heat conduction},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {96--105},
year = {2015},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a7/}
}
TY - JOUR AU - S. V. Solodusha TI - Application of numerical methods for the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 96 EP - 105 VL - 11 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a7/ LA - ru ID - IIGUM_2015_11_a7 ER -
%0 Journal Article %A S. V. Solodusha %T Application of numerical methods for the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 96-105 %V 11 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a7/ %G ru %F IIGUM_2015_11_a7
S. V. Solodusha. Application of numerical methods for the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction. The Bulletin of Irkutsk State University. Series Mathematics, Tome 11 (2015), pp. 96-105. http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a7/
[1] N. M. Yaparova, “Numerical methods for solving a boundary value inverse heat conduction problem”, Inverse Problems in Science and Engineering, 22:5 (2014), 832–847 | DOI
[2] Alifanov O. M., Budnik S. A., Nenarokomov A. V., Netelev A. V., “Identification of Mathematical Models of Heat Transfer in Decomposing Materials”, Thermal processes in engineering, 2011, no. 8, 338–347
[3] Gamov P. A., Drozin A. D., Dudorov M. V., Roshchin V. E., “The Growth Model of Nanocrystals in the Amorphous Alloy”, Metals, 2012, no. 6, 101–106
[4] Korotkii A. I., Kovtunov D. A., “Reconstruction of the boundary conditions in the inverse problem of thermal convection of a viscous fluid”, Proceedings of the Steklov Institute of Mathematics, 255, no. 2, 2006, S81–S92 | DOI
[5] Balabanov P. V., Ponomarev S. V., Trofimov A. V., “Mathematical Modeling of Heat Transfer During of Chemosorption”, Bulletin of the Tambov State Technical University, 14:2 (2008), 334–341
[6] L. Beilina, M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, N.Y., 2012
[7] S. I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, Germany, 2011
[8] H. Brunner, P. J. van der Houwen, The Numerical Solution of Volterra Equations, North-Holland, Amsterdam, 1986
[9] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge Univ. Press, N.Y., 2004
[10] Verlan' A. F., Sizikov V. S., Integral equations: methods, algorithms, programs, Nauk. dumka, Kiev, 1986
[11] Apartsyn A. S., Nonclassical linear Volterra equations of the first kind, VSP Utrecht, Boston, 2003
[12] S. V. Solodusha, N. M. Yaparova, “Numerical solution of the Volterra equations of the first kind that appear in an inverse boundary-value problem of heat conduction”, Numerical Analysis and Applications (to appear)
[13] Kalitkin N. N., Numerical methods, Nauka, M., 1978
[14] Mokry I. V., Khamisov O. V., Tsapakh A. S., “The Basic Mechanisms of the Emergence of Computational Errors in Computer Calculations”, Proc. IVth All-Russian Conference “Problems of Optimization and Economic Applications”, Nasledie, Omsk, 2009, 185
[15] P. Linz, “Product integration method for Volterra integral equations of the first kind”, BIT, 11 (1971), 413–421 | DOI
[16] F. Z. Geng, M. G. Cui, “Analytical Approximation to Solutions of Singularly Perturbed Boundary Value Problems”, Bulletin of the Malaysian Mathematical Sciences Society, 33:2 (2010), 221–232