@article{IIGUM_2015_11_a6,
author = {A. V. Orlov and S. Batbileg},
title = {Oligopolistic banking sector of {Mongolia} and polymatrix games of three players},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {80--95},
year = {2015},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a6/}
}
TY - JOUR AU - A. V. Orlov AU - S. Batbileg TI - Oligopolistic banking sector of Mongolia and polymatrix games of three players JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 80 EP - 95 VL - 11 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a6/ LA - ru ID - IIGUM_2015_11_a6 ER -
A. V. Orlov; S. Batbileg. Oligopolistic banking sector of Mongolia and polymatrix games of three players. The Bulletin of Irkutsk State University. Series Mathematics, Tome 11 (2015), pp. 80-95. http://geodesic.mathdoc.fr/item/IIGUM_2015_11_a6/
[1] Bazaraa M. S., Shetty C. M., Nonlinear Programming: Theory and Algorithms, John Wiley Sons, New York, 1979
[2] Vasilyev F. P., Optimization Methods, Factorial Press, M., 2002 (in Russian)
[3] Vasin A. A., Morozov V. V., Game theory and models of mathematical economics, MAKS Press, M., 2005, 272 pp. (in Russian)
[4] Mazalov V., Mathematical Game Theory and Applications, John Wiley Sons, New York, 2014, 432 pp.
[5] Von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944
[6] Orlov A. V., Strekalovsky A. S., “Numerical search for equilibria in bimatrix games”, Computational Mathematics and Mathematical Physics, 45:6 (2005), 947–960
[7] Orlov A. V., “Numerical solution of bilinear programming problems”, Computational Mathematics and Mathematical Physics, 48:2 (2008), 225–241 | DOI
[8] Strekalovsky A. S., Orlov A. V., Bimatrix games and bilevel programming, Fizmatlit, M., 2007, 224 pp. (in Russian)
[9] Strekalovsky A. S., Orlov A. V., Malyshev A. V., “A local search for the quadratic-linear bilevel programming problem”, Numerical Analysis and Applications, 3:1 (2010), 59–70 | DOI
[10] Strekalovsky A. S., Orlov A. V., “A new approach to nonconvex optimization”, Numerical Methods and Programming, 8:2 (2007), 11–27
[11] Strekalovsky A. S., Enkhbat R., “Polymatrix games and optimization problems”, Automation and Remote Control, 75:4 (2014), 632–645 | DOI
[12] Strekalovsky A. S., Orlov A. V., Malyshev A. V., “Numerical solution of a class of bilevel programming problems”, Numerical Analysis and Applications, 3:2 (2010), 165–173 | DOI
[13] Strekalovsky A. S., Elements of nonconvex optimization, Nauka, Novosibirsk, 2003, 356 pp. (in Russian)
[14] Yanovskaya E. B., “Equilibrium points in polymatrix games”, Latv. Math. Collect., 1968, no. 8, 381–384 (in Russian)
[15] R. Horst, H. Tuy, Global Optimization. Deterministic Approaches, Springer-Verlag, Berlin, 1993
[16] MATLAB — The Language of Technical Computing, , The MathWorks, Inc., Natick, MA (date of assess: 27.11.2014) http://www.mathworks.com/products/matlab/
[17] Poll conducted among bank lenders and research, Mongol Bank, 2013
[18] A. V. Orlov, A. S. Strekalovsky, S. Batbileg, “On computational search for Nash equilibrium in hexamatrix games”, Optimization Letters, 2014 | DOI
[19] A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev, “On computational search for optimistic solutions in bilevel problems”, J. Glob. Optim., 48:1 (2010), 159–172 | DOI
[20] A. S. Strekalovsky, “On solving optimization problems with hidden nonconvex structures”, Optimization in Science and Engineering, eds. T. M. Rassias, C. A. Floudas, S. Butenko, Springer, N.Y., 2014, 465–502 | DOI