On the Hierarchy of Generating Functions for Solutions of Multidimensional Difference Equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 9 (2014), pp. 91-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study generating functions of solutions for a difference equation with the support in a rational cone of the lattice. For Laurent series with the support in such cone we define the notion of D-finiteness and find the sufficient condition, when rationality (algebraicity, D-finiteness) of the generating function of the solution to the Cauchy problem follows from rationality (algebraicity, D-finiteness) of the generating function of its initial data.
Keywords: multidimensional difference equations, Cauchy problem, generating function, D-finite Laurent series.
@article{IIGUM_2014_9_a7,
     author = {T. I. Nekrasova},
     title = {On the {Hierarchy} of {Generating} {Functions} for {Solutions} of {Multidimensional} {Difference} {Equations}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {91--102},
     year = {2014},
     volume = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a7/}
}
TY  - JOUR
AU  - T. I. Nekrasova
TI  - On the Hierarchy of Generating Functions for Solutions of Multidimensional Difference Equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2014
SP  - 91
EP  - 102
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a7/
LA  - ru
ID  - IIGUM_2014_9_a7
ER  - 
%0 Journal Article
%A T. I. Nekrasova
%T On the Hierarchy of Generating Functions for Solutions of Multidimensional Difference Equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2014
%P 91-102
%V 9
%U http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a7/
%G ru
%F IIGUM_2014_9_a7
T. I. Nekrasova. On the Hierarchy of Generating Functions for Solutions of Multidimensional Difference Equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 9 (2014), pp. 91-102. http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a7/

[1] Arnold V. I., Varchenko A. N., Singularities of differentiable maps, MTSNMO, M., 2009, 672 pp.

[2] Leinartas E. K., Lyapin A. P., “On rationality multidimentional recursive power series”, Journal of Siberian Federal University, 2:4 (2009), 449–455

[3] Leng C., Algebra, Nauka, M., 1965, 431 pp.

[4] Nekrasova T. I., “Cauchy Problem for Multidimensional Difference Equations in Lattice Cones”, Journal of Siberian Federal University, 5:4 (2012), 576–580

[5] Nekrasova T. I., “Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations”, The Bulletin of Irkutsk State University, 6:3 (2013), 88–96 | Zbl

[6] Stanley R., Enumerative Combinatorics, v. 2, Mir, M., 2009, 767 pp. | MR

[7] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[8] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[9] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[10] L. Lipshitz, “D-Finite power series”, Journal of Algebra, 122 (1989), 353–373 | DOI | MR | Zbl

[11] R. Stanley, “Differentiably finite power series”, European Journal Combinatorics, 1 (1980), 175–188 | DOI | MR | Zbl