@article{IIGUM_2014_9_a5,
author = {P. A. Kuznetsov},
title = {On {Boundary} {Value} {Problem} with {Degeneration} for {Nonlinear} {Porous} {Medium} {Equation} with {Boundary} {Conditions} on the {Closed} {Surface}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {61--74},
year = {2014},
volume = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a5/}
}
TY - JOUR AU - P. A. Kuznetsov TI - On Boundary Value Problem with Degeneration for Nonlinear Porous Medium Equation with Boundary Conditions on the Closed Surface JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 61 EP - 74 VL - 9 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a5/ LA - ru ID - IIGUM_2014_9_a5 ER -
%0 Journal Article %A P. A. Kuznetsov %T On Boundary Value Problem with Degeneration for Nonlinear Porous Medium Equation with Boundary Conditions on the Closed Surface %J The Bulletin of Irkutsk State University. Series Mathematics %D 2014 %P 61-74 %V 9 %U http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a5/ %G ru %F IIGUM_2014_9_a5
P. A. Kuznetsov. On Boundary Value Problem with Degeneration for Nonlinear Porous Medium Equation with Boundary Conditions on the Closed Surface. The Bulletin of Irkutsk State University. Series Mathematics, Tome 9 (2014), pp. 61-74. http://geodesic.mathdoc.fr/item/IIGUM_2014_9_a5/
[1] Barenblatt G. I., Entov V. M., Ryzhyk V. M., The Theory of Unsteady Filtration of Liquid and Gas, Defense Technical Information Center, Fort Belvoir, 1977, 476 pp.
[2] Bautin S. P., Analytic Heat Wave, Fizmatlit, M., 2003, 88 pp.
[3] Bautin S. P., Kazakov A. L., Generalized Cauchy Problem with Applications, Nauka, Novosibirsk, 2006, 399 pp. | Zbl
[4] Zel'dovich Ya. B., Kompaneets A. S., “Towards a Theory of Heat Propagation with Heat Conductivity Depending on the Temperature”, Sbornik, posv. 70-letiyu Ioffe, 1950, 61–71
[5] Kazakov A. L., “Application of Characteristic Series for Constructing Solutions of Nonlinear Parabolic Equations and Systems with Degeneracy”, Trudy IMM UrO RAN, 18, no. 2, 2012, 114–122
[6] Kazakov A. L., Lempert A. A., “Analytical and Numerical Studies of the Boundary Value Problem of a Nonlinear Filtration with Degeneration”, Vych. tehnologii, 17:1 (2012), 57–68 | MR | Zbl
[7] Kazakov A. L., Lempert A. A., “Existence and Uniqueness of the Solution of the Boundary-Value Problem for a Parabolic Equation of Unsteady Filtration”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 251–258 | DOI | MR | Zbl
[8] Kazakov A. L., Kuznetsov P. A., “On One Boundary Value Problem for a Nonlinear Heat Equation in the Case of Two Space Variables”, J. Appl. Ind. Math., 8:2 (2014), 227–236 | DOI | MR
[9] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “On a Degenerate Boundary Value Problem for the Porous Medium Equation in Spherical Coordinates”, Trudy IMM UrO RAN, 20, no. 1, 2014, 119–129
[10] Kazakov A. L., Spevak L. F., “Boundary Elements Method and Power Series Method for One-dimensional Non-linear Filtration Problems”, Izvestiya IGU. Ser.: Mat., 5:2 (2012), 2–17
[11] Oleynik O. A., Kalashnikov A. S., Chzhou Yu.-L., “The Cauchy Problem and Boundary Value Problems for Equations of the Type of Unsteady Filtration”, Izv. Akad. Nauk SSSR Ser. Matem., 22:5 (1958), 667–704 | MR | Zbl
[12] Rudykh G. A., Semenov E. I., “Non-self-similar Solutions of Multidimensional Nonlinear Diffusion Equations”, Math. Notes, 67:2 (2000), 200–206 | DOI | DOI | MR | Zbl
[13] Samarskiy A. A., Galaktionov V. A., Kurdyumov S. P., Mikhaylov A. P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, New York, 1995, 533 pp. | MR | MR
[14] Sidorov A. F., Selected Works: Mathematics. Mechanics, Fizmatlit, M., 2001, 576 pp.
[15] A. Kazakov, L. Spevak, “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Applied Mathematical Modelling, 37:10–11 (2013), 6918–6928 | DOI | MR
[16] J. L. Vazquez, The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 624 pp. | MR | Zbl