@article{IIGUM_2014_8_a6,
author = {V. A. Dykhta},
title = {Variational {Optimality} {Conditions} with {Feedback} {Descent} {Controls} that {Strengthen} the {Maximum} {Principle}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {86--103},
year = {2014},
volume = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/}
}
TY - JOUR AU - V. A. Dykhta TI - Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 86 EP - 103 VL - 8 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/ LA - ru ID - IIGUM_2014_8_a6 ER -
%0 Journal Article %A V. A. Dykhta %T Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle %J The Bulletin of Irkutsk State University. Series Mathematics %D 2014 %P 86-103 %V 8 %U http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/ %G ru %F IIGUM_2014_8_a6
V. A. Dykhta. Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle. The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 86-103. http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Consultants Bureau, N.Y., 1987, 309 pp. | MR | MR
[2] Gabasov R. F., Kirillova F. M., The maximum principle in optimal control theory, Editorial URSS, M., 2011, 272 pp. (in Russian) | MR
[3] Dykhta V. A., “Weakly monotone and generating $L$-functions in optimal control”, Proc. 10th Int. Chetaev Conf. Analytical mechanics, stability and control, part 1, v. 3, KSTU, Kazan, 2012, 408–420 (in Russian)
[4] Dykhta V. A., “Weakly monotone solutions of the Hamilton–-Jacobi inequality and optimality conditions with positional controls”, Automation and Remote Control, 75:5 (2014), 31–49 | DOI
[5] Clarke F., Optimization and nonsmooth analysis, Université de Montréal, Montreal, 1989, 312 pp. | MR | MR
[6] Clarke F., Ledyaev Yu. S., Subbotin A. I., “Universal positional control and proximal aiming in control problems under perturbations and in differential games”, Proc. Steklov Inst. Math., 224, no. 1, 1999, 149–168 | MR | Zbl
[7] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, N.Y., 1988, 517 pp. | MR | MR
[8] Krasovskii N. N., Control of a dynamic system, Nauka, M., 1985, 518 pp. (in Russian) | MR
[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers John Wiley Sons, N.Y.–London, 1962, 360 pp. | MR | MR
[10] Mordukhovich B. Sh., Approximation methods in problems of optimization and control, Nauka, M., 1988, 360 pp. (in Russian) | MR | Zbl
[11] Subbotin A. I., Generalized solutions of first-order PDEs, Birkhäuser Boston, Inc., Boston, 1995, 312 pp. | MR
[12] Subbotin A. I., Chentsov A. G., Guaranteed optimization in control problems, Nauka, M., 1981, 288 pp. (in Russian) | MR
[13] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., The method of characteristics for the Hamilton–Jacobi equations, RIO UB RAN, Ekaterinburg, 2013, 244 pp. (in Russian)
[14] P. Cannarsa, C. Sinestrari, Semiconcave functions, {H}amilton–{J}acobi equations and optimal control, Progress in nonlinear differential equations and their appications, 58, Birkhauser, Boston, 2004, 304 pp. | MR | Zbl
[15] M. d. R. de Pinho, R. B. Vinter, “An Euler–Lagrange inclusion for optimal control problems”, IEEE Trans. Automat. Control, 40:7 (1995), 1191–1198 | DOI | MR | Zbl
[16] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, N.Y., 1998, 276 pp. | MR
[17] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, “Qualitative Properties of Trajectories of Control Systems: a Survey”, J. Dynamical and Control Syst., 1:1 (1995), 1–48 | DOI | MR | Zbl
[18] J. Warga, “A second order condition that strengthens Pontryagin's maximum principle”, J. Differential Equations, 28:2 (1978), 284–307 | DOI | MR | Zbl