Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle
The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 86-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive nonlocal necessary optimality conditions that strengthen both classical and nonsmooth Maximum Principles for nonlinear optimal control problems with free right-hand end of trajectories. The strengthening is due to employment of feedback controls, which are assumed to ensure a descent of a value of the cost functional, and are extremal with respect to certain solutions of a Hamilton–Jacobi inequality for weakly monotone functions. The main results are Feedback Minimum Principles for smooth and nonsmooth problems, that are formulated through accessory dynamic optimization problems. Effectiveness of these necessary optimality conditions are illustrated by examples.
Keywords: Hamilton–Jacobi inequality, feedback control of descent, Maximum Principle, necessary conditions.
@article{IIGUM_2014_8_a6,
     author = {V. A. Dykhta},
     title = {Variational {Optimality} {Conditions} with {Feedback} {Descent} {Controls} that {Strengthen} the {Maximum} {Principle}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {86--103},
     year = {2014},
     volume = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/}
}
TY  - JOUR
AU  - V. A. Dykhta
TI  - Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2014
SP  - 86
EP  - 103
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/
LA  - ru
ID  - IIGUM_2014_8_a6
ER  - 
%0 Journal Article
%A V. A. Dykhta
%T Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2014
%P 86-103
%V 8
%U http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/
%G ru
%F IIGUM_2014_8_a6
V. A. Dykhta. Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle. The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 86-103. http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a6/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Consultants Bureau, N.Y., 1987, 309 pp. | MR | MR

[2] Gabasov R. F., Kirillova F. M., The maximum principle in optimal control theory, Editorial URSS, M., 2011, 272 pp. (in Russian) | MR

[3] Dykhta V. A., “Weakly monotone and generating $L$-functions in optimal control”, Proc. 10th Int. Chetaev Conf. Analytical mechanics, stability and control, part 1, v. 3, KSTU, Kazan, 2012, 408–420 (in Russian)

[4] Dykhta V. A., “Weakly monotone solutions of the Hamilton–-Jacobi inequality and optimality conditions with positional controls”, Automation and Remote Control, 75:5 (2014), 31–49 | DOI

[5] Clarke F., Optimization and nonsmooth analysis, Université de Montréal, Montreal, 1989, 312 pp. | MR | MR

[6] Clarke F., Ledyaev Yu. S., Subbotin A. I., “Universal positional control and proximal aiming in control problems under perturbations and in differential games”, Proc. Steklov Inst. Math., 224, no. 1, 1999, 149–168 | MR | Zbl

[7] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, N.Y., 1988, 517 pp. | MR | MR

[8] Krasovskii N. N., Control of a dynamic system, Nauka, M., 1985, 518 pp. (in Russian) | MR

[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers John Wiley Sons, N.Y.–London, 1962, 360 pp. | MR | MR

[10] Mordukhovich B. Sh., Approximation methods in problems of optimization and control, Nauka, M., 1988, 360 pp. (in Russian) | MR | Zbl

[11] Subbotin A. I., Generalized solutions of first-order PDEs, Birkhäuser Boston, Inc., Boston, 1995, 312 pp. | MR

[12] Subbotin A. I., Chentsov A. G., Guaranteed optimization in control problems, Nauka, M., 1981, 288 pp. (in Russian) | MR

[13] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., The method of characteristics for the Hamilton–Jacobi equations, RIO UB RAN, Ekaterinburg, 2013, 244 pp. (in Russian)

[14] P. Cannarsa, C. Sinestrari, Semiconcave functions, {H}amilton–{J}acobi equations and optimal control, Progress in nonlinear differential equations and their appications, 58, Birkhauser, Boston, 2004, 304 pp. | MR | Zbl

[15] M. d. R. de Pinho, R. B. Vinter, “An Euler–Lagrange inclusion for optimal control problems”, IEEE Trans. Automat. Control, 40:7 (1995), 1191–1198 | DOI | MR | Zbl

[16] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, N.Y., 1998, 276 pp. | MR

[17] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, “Qualitative Properties of Trajectories of Control Systems: a Survey”, J. Dynamical and Control Syst., 1:1 (1995), 1–48 | DOI | MR | Zbl

[18] J. Warga, “A second order condition that strengthens Pontryagin's maximum principle”, J. Differential Equations, 28:2 (1978), 284–307 | DOI | MR | Zbl