Numerical Methods for Calculation of Time-Optimal Control
The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 164-177
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to algorithms for calculation of time-optimal control in the linear systems. Proposed set of algorithms make possible apply multi-method technique to solving time-optimal control problems with different singularity. Corresponding to this technology the solution is found by a multimethods' algorithm consisting of a sequence of steps of different methods applied to the optimization process in order to accelerate it. Such a technology allows to consider some particularities of the problem of interest at all stages of its solution and to improve the efficiency of optimal control search.
Keywords: convex hull method, attainability set, time-optimal problem, minimax algorithm, linear controlled system.
@article{IIGUM_2014_8_a11,
     author = {A. I. Tyatyushkin},
     title = {Numerical {Methods} for {Calculation} of {Time-Optimal} {Control}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {164--177},
     year = {2014},
     volume = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a11/}
}
TY  - JOUR
AU  - A. I. Tyatyushkin
TI  - Numerical Methods for Calculation of Time-Optimal Control
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2014
SP  - 164
EP  - 177
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a11/
LA  - ru
ID  - IIGUM_2014_8_a11
ER  - 
%0 Journal Article
%A A. I. Tyatyushkin
%T Numerical Methods for Calculation of Time-Optimal Control
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2014
%P 164-177
%V 8
%U http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a11/
%G ru
%F IIGUM_2014_8_a11
A. I. Tyatyushkin. Numerical Methods for Calculation of Time-Optimal Control. The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 164-177. http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a11/

[1] Andreev N., Manage finite linear objects, Nauka, M., 1976, 424 pp. (in Russian) | MR

[2] Vasil’ev O. V., Tyatyushkin A. I., “On the numerical solution of linear time-optimal control”, Differential and Integral Equations, 2, University Press, Irkutsk, 1973, 57–69 (in Russian)

[3] Gabasov R., Kirillova F. M., Qualitative theory of optimal processes, Nauka, M., 1971, 508 pp. (in Russian) | MR

[4] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Constructive Optimization Methods, v. 1, Linear problems, Minsk, 1984, 214 pp. (in Russian) | MR

[5] Kalman R., Falb P., Arbib M., Essays on mathematical systems theory, Wiley, New York, 1971, 400 pp. | MR | Zbl

[6] Krasovskii N. N., Theory of motion control, Nauka, M., 1968, 476 pp. (in Russian) | MR

[7] Tyatyushkin A. I., Multimethod optimization technology controlled systems, Nauka, Novosibirsk, 2006, 343 pp. (in Russian)

[8] Tyatyushkin A. I., Fedunov B. E., “Numerical study of the properties of optimal control in a pursuit problem”, Math. RAS, Tisza, 2005, no. 3, 104–113 (in Russian) | MR

[9] Barr R. O., “An efficient computational procedure for a generalized quadratic programming problem”, J. SIAM Control, 7:3 (1969), 415–429 | DOI | MR | Zbl

[10] Eaton J. H., “An iterative solution to time-optimal control”, J. Math. Anal. and Appl., 5:2 (1962), 329–344 | DOI | MR | Zbl

[11] Gibert E. G., “An iterative procedure for computing the minimum of a quadratic from on a convex set”, J. SIAM Control, 4:1 (1966), 61–80 | DOI | MR

[12] Tyatyushkin A. I., “A multimethod technique for solving optimal control problem”, Optimization Letters, 2012, no. 7, 1335–1347 | DOI | MR | Zbl