Mots-clés : convergence.
@article{IIGUM_2014_8_a1,
author = {A. S. Antipin and E. V. Khoroshilova},
title = {A {Boundary} {Value} {Problem} of {Terminal} {Control} with a {Quadratic} {Criterion} of {Quality}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {7--28},
year = {2014},
volume = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a1/}
}
TY - JOUR AU - A. S. Antipin AU - E. V. Khoroshilova TI - A Boundary Value Problem of Terminal Control with a Quadratic Criterion of Quality JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 7 EP - 28 VL - 8 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a1/ LA - ru ID - IIGUM_2014_8_a1 ER -
%0 Journal Article %A A. S. Antipin %A E. V. Khoroshilova %T A Boundary Value Problem of Terminal Control with a Quadratic Criterion of Quality %J The Bulletin of Irkutsk State University. Series Mathematics %D 2014 %P 7-28 %V 8 %U http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a1/ %G ru %F IIGUM_2014_8_a1
A. S. Antipin; E. V. Khoroshilova. A Boundary Value Problem of Terminal Control with a Quadratic Criterion of Quality. The Bulletin of Irkutsk State University. Series Mathematics, Tome 8 (2014), pp. 7-28. http://geodesic.mathdoc.fr/item/IIGUM_2014_8_a1/
[1] Antipin A. S., “One method of finding a saddle point of a modified Lagrange function”, Economics and Mathematical Methods, XIII:3 (1977), 560–565 (in Russian) | MR | Zbl
[2] Antipin A. S., Khoroshilova E. V., “On extragradient type methods for solving optimal control problem with linear constraints”, Proceedings of ISU. Mathematics, 3:3 (2010), 2–20 (in Russian)
[3] Antipin A. S., “Modified Lagrange function method for optimal control problems with free right end”, Proceedings of ISU. Mathematics, 4:2 (2011), 27–44 (in Russian)
[4] Antipin A. S., Khoroshilova E. V., “Terminal control boundary value problems of convex programming”, Optimization and application, 2013, no. 3, 17–55 (in Russian) | MR
[5] Antipin A. S., “Terminal control boundary models”, Computational Mathematics and Mathematical Physics, 54:2 (2014), 257–285 (in Russian) | DOI
[6] Antipin A. S., Khoroshilova E. V., “Optimal control related initial and terminal conditions”, Proceedings of the Institute of Mathematics and Mechanics UB RAS, 20, no. 2, 2014, 7–22 (in Russian) | Zbl
[7] Vasil'ev F. P., Khoroshilova E. V., “Extra-gradient method for finding a saddle point in the optimal control”, Bulletin of Lomonosov Moscow State University. Series 15. Computational Mathematics and Cybernetics, 2010, no. 3, 18–23 (in Russian) | MR
[8] Vasil'ev F. P., Khoroshilova E. V., Antipin A. S., “Extragradient regularized method for finding a saddle point in the optimal control problem”, Proceedings of Institute of Mathematics and Mechanics, UB RAS, 17, no. 1, 2011, 27–37 (in Russian) | MR | Zbl
[9] Vasil'ev F. P., Optimization Methods, In 2 books, M., 2011 (in Russian)
[10] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, M., 1974, 479 pp. (in Russian)
[11] Konnov I. V., Nonlinear optimization and variational inequalities, Kazan, 2013, 508 pp. (in Russian)
[12] Korpelevich G. M., “Extragradient method for finding saddle points and other problems”, Economics and Mathematical Methods, XII:6 (1976), 747–756 (in Russian) | MR | Zbl
[13] Lyusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka, M., 1965 (in Russian)
[14] Natanson I. P., Theory of functions of a real variable, M., 1957, 552 pp. (in Russian)
[15] Srochko V. A., Aksenyushkina E. V., “Linear-quadratic optimal control problem: rationale and convergence of nonlocal methods for solving”, Proceedings of ISU. Mathematics, 6:1 (2013), 89–100 (in Russian)
[16] Khoroshilova E. V., “Extragradient method in optimal control problem with terminal constraints”, Automation and Remote Control, 2012, no. 3, 117–133 (in Russian)
[17] F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, v. 1, Springer-Verlag, 2003
[18] E. V. Khoroshilova, “Extragradient-type method for optimal control problem with linear constraints and convex objective function”, Optim. Lett., 7:6 (2013), 1193–1214 | DOI | MR | Zbl