On Vanishing of the Group $\mathrm{Hom}(-, C)$
The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 46-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the set of homomorphisms from a fixed abelian group $A$ to a fixed abelian group $B$ forms an additive abelian group denoted as $\mathrm{Hom}(A,\,B).$ Homomorphism groups of abelian groups possess many remarkable properties. For example, they behave like functors in the category of abelian groups. In some important cases, one can express invariants of the group $\mathrm{Hom}(A,\,B)$ in terms of invariants of the groups $A$ and $B,$ e.g., if $A$ is a torsion abelian group or if $B$ is an algebraically compact abelian group. If $A=B,$ the group $\mathrm{Hom}(A,\,B)=\mathrm{End}(A,\,B)$ is called the endomorphism group of the group $A;$ it can be turned into a ring denoted as $\mathrm{E}(A).$ Studying homomorphism groups and endomorphism rings is an important problem of the theory of abelian groups. In particular, describing abelian groups such that $\mathrm{Hom}(A,\,B)=0$ is one of open problems in this theory. For example, the group $\mathrm{Hom}(A,\,B)$ is zero in the following case. Let an abelian group $G$ be decomposed into a sum of its subgroups $A$ and $B,$ $A$ being a fully invariant subgroup in the group $G,$ i.e., $A$ is mapped into itself under any endomorphism of the group $G.$ Then, $\mathrm{Hom}(A,\,B)=0.$ The torsion subgroup of a group, for example, is its fully invariant subgroup. In this paper, a criterion of vanishing is presented for an arbitrary homomorphism from an arbitrary abelian group to an arbitrary torsion free group.
@article{IIGUM_2014_7_a3,
     author = {V. Misyakov},
     title = {On {Vanishing} of the {Group} $\mathrm{Hom}(-, C)$},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {46--51},
     year = {2014},
     volume = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a3/}
}
TY  - JOUR
AU  - V. Misyakov
TI  - On Vanishing of the Group $\mathrm{Hom}(-, C)$
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2014
SP  - 46
EP  - 51
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a3/
LA  - ru
ID  - IIGUM_2014_7_a3
ER  - 
%0 Journal Article
%A V. Misyakov
%T On Vanishing of the Group $\mathrm{Hom}(-, C)$
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2014
%P 46-51
%V 7
%U http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a3/
%G ru
%F IIGUM_2014_7_a3
V. Misyakov. On Vanishing of the Group $\mathrm{Hom}(-, C)$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 46-51. http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a3/

[1] Grinshpon S. Ya., “Problem 2”, Abelian Groups, Transaction All-Russian Symposium, Biysk, 2005, 60

[2] Grinshpon S. Ya., “On the Equality to Zero of the Homomorphism Group of Abelian Groups”, Izvestiya VUZ. Matematika, 42:9 (1998), 39–43 | MR

[3] P. Schultz, “Annihilator classes of torsion-free abelian groups”, Lect. Notes Math., 697, 1978, 88–94 | DOI | MR

[4] R. Dimitriĉ, “On coslender groups”, Glasnik Matem., 21:2 (1986), 327–329 | MR

[5] Krylov P. A., Podberezina Ye. I., “The Group $\mathrm{Hom}(A, B)$ as an Artinian $\mathrm{E}(B)$- or $\mathrm{E}(A)$-module”, Journal of Mathematical Sciences, 154:3 (2008), 333–343 | DOI | MR

[6] Mishina A. P., “On the Automorphism and the Endomorphism of Abelian Groups”, Moscow University Bulletin. Series 1. Mathematics. Mechanics, 1962, no. 4, 39–43

[7] Grinshpon S. Ya., Yeltsova T. A., “Homomorphic Images of Abelian Groups”, Journal of Mathematical Sciences, 154:3 (2008), 290–294 | DOI | MR

[8] Chekhlov A. R., “On Abelian Groups Close to $\mathrm{E}$-solvable Groups”, Fundam. Prikl. Mat., 17:8 (2012), 183–219 | MR

[9] Kulikov L. Ya., “Generalized Primary Groups, II”, Tr. Mosk. Mat. Obs., 2, 1953, 85–167 | MR

[10] Fuchs L., Infinite Abelian Groups, v. I, Pure and Applied Mathematics, 36, Academic Press, New York–London, 1970

[11] Fuchs L., Infinite Abelian Groups, v. II, Pure and Applied Mathematics, 36, Academic Press, New York–London, 1973 | MR