Quasifields and Translation Planes of the Smallest Even Order
The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 141-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructs of different classes of finite non-Desargues translation planes and quasifields closely related. It used by computer calculations since the middle of last century. We study semifields of order 32 and quasifields of order 16 of corresponding translation planes. It is known that translation planes of any order $p^n$ for a prime p can be constructed by using a coordinatizing set $W$ of order $n$ over the field of order $p$. By using a spread set we providing $W$ of structure of quasifield. The plane is set to be a semifield plane if $W$ is a semifield. The plane is Desargues if $W$ is a field. It is well-known that semifield planes are isomorphic if and only if their semifields are isotopic. Structure of quasifields of order $p^n$ has been studied a few, even for small $n$. In 1960 Kleinfeld classified quasifields of order 16 with kernel of order 4 and all semifields of order 16 up to isomorphisms. Later Dempwolf and other completed the classification of all translation planes of order 16 and 32. We construct 5 semifields of order 32 and 7 quasifields of order 16 of non-Desargues planes by using their spread sets. For these semifields and for these quasifields (partially) our main results list for them introduced orders of all non-zero elements and all subfields.
Keywords: translation planes, spread set, quasifield, semifield, order of element of loop.
@article{IIGUM_2014_7_a11,
     author = {P. Shtukkert},
     title = {Quasifields and {Translation} {Planes} of the {Smallest} {Even} {Order}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {141--159},
     year = {2014},
     volume = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/}
}
TY  - JOUR
AU  - P. Shtukkert
TI  - Quasifields and Translation Planes of the Smallest Even Order
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2014
SP  - 141
EP  - 159
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/
LA  - ru
ID  - IIGUM_2014_7_a11
ER  - 
%0 Journal Article
%A P. Shtukkert
%T Quasifields and Translation Planes of the Smallest Even Order
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2014
%P 141-159
%V 7
%U http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/
%G ru
%F IIGUM_2014_7_a11
P. Shtukkert. Quasifields and Translation Planes of the Smallest Even Order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 141-159. http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/

[1] Kurosh A. A., Lectures on general algebra, M., 1973

[2] Levchuk V. M., Panov S. V., Shtukker P. K., “Enumeration of semifield planes and Latin rectangles”, Book of scientific articles «Modeling and mechanics», Sib. St. Air. Univ., Krasnoyarsk, 2012, 56–70

[3] Podufalov N. D., “On functions on linear spaces”, J. Algebra and Logic, 41:1 (2002), 83–103 | MR

[4] Hall M., Theory of groups, M., 1962

[5] Shtukkert P. K., “On the properties of semifields of even order”, International Conference «Mal'tcev meeting», Collection of abstracts (Novosibirsk, 2013), 114

[6] A. A. Albert, “Finite division algebras and finite planes”, Proc. Sympos. Appl. Math., 10 (1960), 53–70 | DOI | MR

[7] J. André, “Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe”, Math. Z., 60 (1954), 156–186 | DOI | MR

[8] U. Dempwolff, A. Reifart, “The Classification of the translation planes of order 16, I”, Geom. Dedicata, 15 (1983), 137–153 | DOI | MR

[9] Dempwolff U. http://www.mathematik.uni-kl.de/d̃empw/dempw_Plane.html

[10] L. E. Dixon, “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7 (1906), 370–390 | DOI | MR

[11] D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New-York, 1973 | MR

[12] E. Kleinfeld, “Techniques for enumerating Veblen–Wedderburn systems”, J. Assoc. Comput. Mach., 7 (1960), 330–337 | DOI | MR

[13] D. E. Knuth, “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR

[14] P. Lorimer, “A Projective Plane of Order 16”, J. Combinatorial theory (A), 16 (1974), 334–347 | DOI | MR

[15] H. Lüneburg, Translation planes, Springer-Verlag, Berlin–Heidelberg–New-York, 1980 | MR

[16] R. Rockenfeller, Translationsebenen der Ordnung 32, Diploma Thesis, FB Mathematik, University of Kaiserslautern, 2011

[17] O. Veblen, J. H. Maclagan–Wedderburn, “Non-Desarguesian and Non-Pascalian Geometries”, Trans. Amer. Math. Soc., 8:3 (1907), 379–388 | DOI | MR

[18] R. J. Walker, “Determination of Division Algebras with 32 Elements”, Proc. Symp. Appl. Math. XV, Amer. Math. Soc., 1962, 83–85 | MR

[19] J. R. Wesson, “On Veblen–Wedderburn Systems”, The Amer. Math. Monthly, 64:9 (1957), 631–635 | DOI | MR