@article{IIGUM_2014_7_a11,
author = {P. Shtukkert},
title = {Quasifields and {Translation} {Planes} of the {Smallest} {Even} {Order}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {141--159},
year = {2014},
volume = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/}
}
P. Shtukkert. Quasifields and Translation Planes of the Smallest Even Order. The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 141-159. http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a11/
[1] Kurosh A. A., Lectures on general algebra, M., 1973
[2] Levchuk V. M., Panov S. V., Shtukker P. K., “Enumeration of semifield planes and Latin rectangles”, Book of scientific articles «Modeling and mechanics», Sib. St. Air. Univ., Krasnoyarsk, 2012, 56–70
[3] Podufalov N. D., “On functions on linear spaces”, J. Algebra and Logic, 41:1 (2002), 83–103 | MR
[4] Hall M., Theory of groups, M., 1962
[5] Shtukkert P. K., “On the properties of semifields of even order”, International Conference «Mal'tcev meeting», Collection of abstracts (Novosibirsk, 2013), 114
[6] A. A. Albert, “Finite division algebras and finite planes”, Proc. Sympos. Appl. Math., 10 (1960), 53–70 | DOI | MR
[7] J. André, “Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe”, Math. Z., 60 (1954), 156–186 | DOI | MR
[8] U. Dempwolff, A. Reifart, “The Classification of the translation planes of order 16, I”, Geom. Dedicata, 15 (1983), 137–153 | DOI | MR
[9] Dempwolff U. http://www.mathematik.uni-kl.de/d̃empw/dempw_Plane.html
[10] L. E. Dixon, “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7 (1906), 370–390 | DOI | MR
[11] D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New-York, 1973 | MR
[12] E. Kleinfeld, “Techniques for enumerating Veblen–Wedderburn systems”, J. Assoc. Comput. Mach., 7 (1960), 330–337 | DOI | MR
[13] D. E. Knuth, “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR
[14] P. Lorimer, “A Projective Plane of Order 16”, J. Combinatorial theory (A), 16 (1974), 334–347 | DOI | MR
[15] H. Lüneburg, Translation planes, Springer-Verlag, Berlin–Heidelberg–New-York, 1980 | MR
[16] R. Rockenfeller, Translationsebenen der Ordnung 32, Diploma Thesis, FB Mathematik, University of Kaiserslautern, 2011
[17] O. Veblen, J. H. Maclagan–Wedderburn, “Non-Desarguesian and Non-Pascalian Geometries”, Trans. Amer. Math. Soc., 8:3 (1907), 379–388 | DOI | MR
[18] R. J. Walker, “Determination of Division Algebras with 32 Elements”, Proc. Symp. Appl. Math. XV, Amer. Math. Soc., 1962, 83–85 | MR
[19] J. R. Wesson, “On Veblen–Wedderburn Systems”, The Amer. Math. Monthly, 64:9 (1957), 631–635 | DOI | MR