Mots-clés : dichotomies of solutions
@article{IIGUM_2014_7_a1,
author = {S. Zagrebina and M. Sagadeeva},
title = {The {Generalized} {Splitting} {Theorem} for {Linear} {Sobolev} type {Equations} in {Relatively} {Radial} {Case}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {19--33},
year = {2014},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a1/}
}
TY - JOUR AU - S. Zagrebina AU - M. Sagadeeva TI - The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 19 EP - 33 VL - 7 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a1/ LA - en ID - IIGUM_2014_7_a1 ER -
%0 Journal Article %A S. Zagrebina %A M. Sagadeeva %T The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case %J The Bulletin of Irkutsk State University. Series Mathematics %D 2014 %P 19-33 %V 7 %U http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a1/ %G en %F IIGUM_2014_7_a1
S. Zagrebina; M. Sagadeeva. The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case. The Bulletin of Irkutsk State University. Series Mathematics, Tome 7 (2014), pp. 19-33. http://geodesic.mathdoc.fr/item/IIGUM_2014_7_a1/
[1] Demidenko G. V., Uspenskii S. V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. | MR
[2] Gilmutdinova A. F., “On Nonuniqueness of Solutions to the Showalter-Sidorov Problem for the Plotnikov Model”, Vestnik of Samara State University, 2007, no. 9/1, 85–90 (Russian) | MR
[3] Keller A. V., “Relatively spectral theorem”, Bulletin of the Chelyabinck State University, Series of Mathematic and Mechanic, 1996, no. 1 (3), 62–66 (Russian) | MR
[4] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI
[5] Sagadeeva M. A., “Exponential Dichotomies of Solutions of a Class of Sobolev Type Equations”, Vestnik Chelyabinsk State University, Seria 3, Mathematics. Mechanics. Informatics, 2003, no. 1, 136–145 (Russian) | MR
[6] Sagadeeva M. A., Dichotomy of the solutions for linear equations of Sobolev type, Publishing center of SUSU, Chelyabinsk, 2012, 139 pp. (Russian)
[7] Sagadeeva M. A., Shulepov A. N., “The Approximations for Degenerate C0-semigroup”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 6:2 (2013), 133–137 (Russian)
[8] Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR
[9] Russian Acad. Set. Dokl. Math., 50:1 (1995), 137–142 | MR
[10] Russian Math. (Iz. VUZ), 41:5 (1997), 57–65 | MR
[11] Sviridyuk G. A., Sukhanova M. V., “Solvability of Cauchy Problem for Linear Singular Equations of Evolution Type”, Differential Equations, 28:3 (1992), 508–515 (Russian) | MR
[12] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR
[13] Zagrebina S. A., “The Multipoint Initial-Finish Problem for Hoff Linear Model”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 2012, no. 5 (264), 4–12 (Russian)
[14] Zagrebina S. A., “The Initial-Finite Problems for Nonclessical Models of Mathematical Physics”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 6:2 (2013), 5–24 (Russian)
[15] Zagrebina S. A., Sagadeeva M. A., “Generalized Showalter–Sidorov Problem for Sobolev Type Equations with strong $\mathrm{(L,p)}$-radial operator”, Vestnik of Magnitogorsk State University, Mathematics, 2006, no. 9, 17–27 (Russian) | MR
[16] Zamyshlyaeva A. A., Yuzeeva A. V., “The Initial-Finish Value Problem for the Boussinesque-Love Equation Defined on Graph”, The Bulletin of Irkutsk State University, Series “Mathematics”, 3:2 (2010), 18–29 (Russian)