@article{IIGUM_2014_10_a7,
author = {V. E. Fedorov and L. V. Borel},
title = {On solvability of degenerate linear evolution equations with memory effects},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {106--124},
year = {2014},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a7/}
}
TY - JOUR AU - V. E. Fedorov AU - L. V. Borel TI - On solvability of degenerate linear evolution equations with memory effects JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 106 EP - 124 VL - 10 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a7/ LA - ru ID - IIGUM_2014_10_a7 ER -
V. E. Fedorov; L. V. Borel. On solvability of degenerate linear evolution equations with memory effects. The Bulletin of Irkutsk State University. Series Mathematics, Tome 10 (2014), pp. 106-124. http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a7/
[1] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin–Heideberg–New-York, 1966
[2] Mizokhata S., Theory of Partial Differential Equations, Mir, M., 1977, 504 pp. (in Russian)
[3] Oskolkov A. P., “Initial Boundary Value Problems for Motion Equations of Kelvin–Voight and Oldroyd Fluids”, Proceedings of Steklov Mathematics Institute of USSR Academy of Sciences, 179, 1988, 126–164 (in Russian)
[4] Sidorov N. A., “A Class of Degenerate Differential Equations with Convergence”, Math. Notes, 35:4 (1984), 300–305 | DOI
[5] Stakheeva O. A., “Local Solvability of a Class of Linear Equations with Memory”, Herald of Chelyabinsk State University. Ser. Mathematics, Mechanics, Informatics, 20(158):11 (2009), 70–76 (in Russian)
[6] Falaleev M. V., “Integro-Differential Equations with Fredholm Operator at Highest Derivative in Banach Spaces and Their Applications”, News of Irkutsk State University. Ser. Mathematics, 5:2 (2012), 90–102 (in Russian)
[7] Falaleev M. V., Orlov S. S., “Degenerate Integro-Differential Operators in Banach Spaces and Their Applications”, Russian Math. (Iz. VUZ), 55:10 (2011), 59–69
[8] Falaleev M. V., Orlov S. S., “Degenerate Integro-Differential Equations of Special Form in Banach Spaces and Their Applications”, Herald of South Ural State University, Ser. Mathematical Modeling and Programming, 35(211):6 (2010), 104–109 (in Russian)
[9] Falaleev M. V., Orlov S. S., “Integro-Differential Equations with Degeneration in Banach Spaces and Their Applications in Mathematical Elasticity Theory”, News of Irkutsk State University, 4:1 (2011), 118–134 (in Russian)
[10] Fedorov V. E., Omelchenko O. A., “Inhomogeneous Degenerate Sobolev Type Equations with Delay”, Siberian Mathematical Journal, 53:2 (2012), 335–344 | DOI
[11] Fedorov V. E., Omelchenko O. A., “Linear Equations of the Sobolev Type with Integral Delay Operator”, Russian Math. (Iz. VUZ), 58:1 (2014), 60–69
[12] Fedorov V. E., Stakheeva O. A., “On Solvability of Linear Sobolev Type Equations with Memory Effect”, Nonclassical Mathematical Physics Equations, Sobolev Institute of Mathematics of SB RAS, Novosibirsk, 2010, 245–261 (in Russian)
[13] C. Giorgi, A. Marzocchi, “Asymptotic behavior of a semilinear problem in heat conduction with memory”, Nonlinear Differ. Equ. Appl., 5 (1998), 333–354 | DOI
[14] M. E. Gurtin, A. C. Pipkin, “A general theory of heat conduction with finite wave speeds”, Arch. Rational Mech. Anal., 31 (1968), 113–126 | DOI
[15] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 2002, 548 pp.
[16] S. Gatti, M. Grasselli, V. Pata, M. Squassina, “Robust exponential attractors for a family of nonconserved phase-field systems with memory”, Discrete and Continuous Dynamical Systems, 12:5 (2005), 1019–1029 | DOI
[17] R. E. Showalter, “Nonlinear degenerate evolution equations and partial differential equations of mixed type”, SIAM J. Math. Anal., 6:1 (1975), 25–42 | DOI
[18] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216+vii pp.