Keywords: Banach space, Fredholm operator, fundamental operator-function.
@article{IIGUM_2014_10_a5,
author = {S. S. Orlov},
title = {On the order of singularity of the generalized solution of the {Volterra} integral equation of convolutional type in {Banach} spaces},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {76--92},
year = {2014},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a5/}
}
TY - JOUR AU - S. S. Orlov TI - On the order of singularity of the generalized solution of the Volterra integral equation of convolutional type in Banach spaces JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2014 SP - 76 EP - 92 VL - 10 UR - http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a5/ LA - ru ID - IIGUM_2014_10_a5 ER -
%0 Journal Article %A S. S. Orlov %T On the order of singularity of the generalized solution of the Volterra integral equation of convolutional type in Banach spaces %J The Bulletin of Irkutsk State University. Series Mathematics %D 2014 %P 76-92 %V 10 %U http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a5/ %G ru %F IIGUM_2014_10_a5
S. S. Orlov. On the order of singularity of the generalized solution of the Volterra integral equation of convolutional type in Banach spaces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 10 (2014), pp. 76-92. http://geodesic.mathdoc.fr/item/IIGUM_2014_10_a5/
[1] Vainberg M. M., Trenogin V. A., Theory of Branching of Solutions of Nonlinear Equations, Nauka, M., 1969, 528 pp. (in Russian)
[2] Vladimirov V. S., Generalized Functions in Mathematical Physics, Nauka, M., 1979, 320 pp. (in Russian)
[3] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, M., 2007, 736 pp. (in Russian)
[4] Orlov S. S., Generalized Solutions of Integro-Differential Equations of Higher Orders in Banach Spaces, ISU Publ., Irkutsk, 2014, 149 pp. (in Russian)
[5] Orlov S. S., “The Solvability of Volterra Integro-Differential Equations with Fredholm Operator in Main Part”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya «Matematika», 5:3 (2012), 73–93 (in Russian)
[6] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Degenerated Differential and Integral Equations in Banach Spaces”, Metod Funkciy Lyapunova v analize dinamiki sistem, Nauka, Novosibirsk, 1988, 308–318 (in Russian)
[7] Sidorov N. A., “On the Class of Volterra Equations with Degenerating in Banach Spaces”, Sib. Mat. Jurn., 21:2 (1983), 202–203 (in Russian)
[8] Falaleev M. V., “Fundamental Operator-Functions of a Singular Differential Operators in Banach Spaces”, Sib. Mat. Jurn., 41:5 (2000), 1167–1182
[9] Shilov G. E., Mathematical Analisys. Second Special Course, Nauka, M., 1965, 328 pp. (in Russian)
[10] M. V. Falaleev, S. S. Orlov, “Degenerate integro-differential operators in Banach spaces and their applications”, Russian Mathematics, 55:10 (2011), 59–69 | DOI