Singular integro-differential equations of the special type in Banach spaces and it’s applications
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 128-137
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper Cauchy problem for singular integro-differential equation of the special type in Banach spaces is investigated with help of the theory of fundamental operator-functions. The corresponding fundamental operator-function is constructed, the conditions for equal generalized with classical solution are describet. The abstract results are illustrated by examples of the initial-bounbary problems of the mathematical theory of viscoelasticity.
Keywords:
Banach spaces; generalized function; Jordan set; Fredholm operator; fundamental operator-function.
@article{IIGUM_2013_6_4_a8,
author = {M. V. Falaleev},
title = {Singular integro-differential equations of the special type in {Banach} spaces and it{\textquoteright}s applications},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {128--137},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/}
}
TY - JOUR AU - M. V. Falaleev TI - Singular integro-differential equations of the special type in Banach spaces and it’s applications JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 128 EP - 137 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/ LA - ru ID - IIGUM_2013_6_4_a8 ER -
%0 Journal Article %A M. V. Falaleev %T Singular integro-differential equations of the special type in Banach spaces and it’s applications %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 128-137 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/ %G ru %F IIGUM_2013_6_4_a8
M. V. Falaleev. Singular integro-differential equations of the special type in Banach spaces and it’s applications. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 128-137. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/