Singular integro-differential equations of the special type in Banach spaces and it’s applications
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 128-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper Cauchy problem for singular integro-differential equation of the special type in Banach spaces is investigated with help of the theory of fundamental operator-functions. The corresponding fundamental operator-function is constructed, the conditions for equal generalized with classical solution are describet. The abstract results are illustrated by examples of the initial-bounbary problems of the mathematical theory of viscoelasticity.
Keywords: Banach spaces; generalized function; Jordan set; Fredholm operator; fundamental operator-function.
@article{IIGUM_2013_6_4_a8,
     author = {M. V. Falaleev},
     title = {Singular integro-differential equations of the special type in {Banach} spaces and it{\textquoteright}s applications},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {128--137},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/}
}
TY  - JOUR
AU  - M. V. Falaleev
TI  - Singular integro-differential equations of the special type in Banach spaces and it’s applications
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 128
EP  - 137
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/
LA  - ru
ID  - IIGUM_2013_6_4_a8
ER  - 
%0 Journal Article
%A M. V. Falaleev
%T Singular integro-differential equations of the special type in Banach spaces and it’s applications
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 128-137
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/
%G ru
%F IIGUM_2013_6_4_a8
M. V. Falaleev. Singular integro-differential equations of the special type in Banach spaces and it’s applications. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 128-137. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a8/

[1] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969, 528 pp. | MR

[2] M. V. Falaleev, “Integro-differentsialnye uravneniya s fredgolmovym operatorom pri starshei proizvodnoi v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 5:2 (2012), 90–102 | Zbl

[3] M. V. Falaleev, “Fundamentalnye operator-funktsii singulyarnykh differentsialnykh operatorov v banakhovykh prostranstvakh”, Sib. mat. zhurn., 41:5 (2000), 1167–1182 | MR | Zbl

[4] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl

[5] M. V. Falaleev, S. S. Orlov, “Vyrozhdennye integro-differentsialnye operatory v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. vuzov. Matematika, 2011, no. 10, 68–79 | MR | Zbl

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl