Regular systems of differential-algebraic equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 107-127

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear and nonlinear systems of differential-algebraic equations. The conditions of reducibility and regularity of linear systems are obtained. The theorems connecting these notions are proved. The theorem about stability of nonlinear systems in the first approximation is proved under the conditions of existence of some global structural form. An arbitrary high unsolvability index and variable ranks of Jacobi matrices describing a system are allowed.
Keywords: differential-algebraic equations, reducibility, regularity, stability in the first approximation.
@article{IIGUM_2013_6_4_a7,
     author = {A. A. Shcheglova and P. S. Petrenko},
     title = {Regular systems of differential-algebraic equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {107--127},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/}
}
TY  - JOUR
AU  - A. A. Shcheglova
AU  - P. S. Petrenko
TI  - Regular systems of differential-algebraic equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 107
EP  - 127
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/
LA  - ru
ID  - IIGUM_2013_6_4_a7
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%A P. S. Petrenko
%T Regular systems of differential-algebraic equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 107-127
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/
%G ru
%F IIGUM_2013_6_4_a7
A. A. Shcheglova; P. S. Petrenko. Regular systems of differential-algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 107-127. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/