Regular systems of differential-algebraic equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 107-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider linear and nonlinear systems of differential-algebraic equations. The conditions of reducibility and regularity of linear systems are obtained. The theorems connecting these notions are proved. The theorem about stability of nonlinear systems in the first approximation is proved under the conditions of existence of some global structural form. An arbitrary high unsolvability index and variable ranks of Jacobi matrices describing a system are allowed.
Keywords: differential-algebraic equations, reducibility, regularity, stability in the first approximation.
@article{IIGUM_2013_6_4_a7,
     author = {A. A. Shcheglova and P. S. Petrenko},
     title = {Regular systems of differential-algebraic equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {107--127},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/}
}
TY  - JOUR
AU  - A. A. Shcheglova
AU  - P. S. Petrenko
TI  - Regular systems of differential-algebraic equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 107
EP  - 127
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/
LA  - ru
ID  - IIGUM_2013_6_4_a7
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%A P. S. Petrenko
%T Regular systems of differential-algebraic equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 107-127
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/
%G ru
%F IIGUM_2013_6_4_a7
A. A. Shcheglova; P. S. Petrenko. Regular systems of differential-algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 107-127. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a7/

[1] K. E. Brenan, S. L. Campbell, L. R. Petzold, “Numerical solution of initial-value problems in differential-algebraic equations”, SIAM, 1996 | MR

[2] S. L. Campbell, C. W. Gear, “The index of general nonlinear DAEs”, Numer. Math., 1995, no. 72, 173–196 | DOI | MR | Zbl

[3] U. M. Ascher, L. R. Petzold, “Computer methods for ordinary differential equations and differential-algebraic equations”, SIAM, 1998 | MR

[4] S. L. Campbell, E. Griepentrog, “Solvability of general differential algebraic equations”, SIAM J. Sci. Stat. Comp., 1995, no. 16, 257–270 | DOI | MR | Zbl

[5] A. A. Scheglova, “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, AiT, 2008, no. 10, 57–80

[6] A. A. Scheglova, “Suschestvovanie resheniya nachalnoi zadachi dlya vyrozhdennoi lineinoi gibridnoi sistemy s peremennymi koeffitsientami”, Izv. vuzov. Matematika, 2010, no. 9, 57–70

[7] V. F. Chistyakov, Algebro-differentsialnye operatory s konechnomernym yadrom, Nauka, Novosibirsk, 1996, 278 pp. | MR

[8] P. Kunkel, V. Mehrmann, “Regular solutions of nonlinear differential-algebraic equations and their numerical determination”, Numer. Math., 1998, no. 79, 581–600 | DOI | MR | Zbl

[9] V. F. Chistyakov, A. A. Scheglova, Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003, 319 pp. | MR | Zbl

[10] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[11] N. P. Erugin, Privodimye sistemy, Tr. Mat. in-ta im. V. A. Steklova, 13, Izd-vo AN SSSR, M.–L., 1946 | MR | Zbl

[12] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 467 pp. | MR

[13] I. V. Gaishun, Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, Izd-vo In-ta matematiki NAN Belarusi, Minsk, 1999 | MR

[14] G. E. Shilov, Matematicheskii analiz (funktsii neskolkikh veschestvennykh peremennykh), v. 1, 2, Nauka, M., 1972, 624 pp. | Zbl

[15] M. Cristea, “A note on global implicit function theorem”, Journal of inequalities in pure and applied mathematics, 8:4 (2007), 100 | MR | Zbl