Start control for degenerate linear distributed systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 53-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Start control problems for a class of linear distributed systems usolved with respect to the times derivative are studied. Two types of initial condition for the system state and various cost functionals are considered in the problems. Abstract results are illustrated by examples of the start control problems for the linearized quasistationary system of phase field equations.
Keywords: optimal control problem, start control problem, distributed system, degenerate evolution equation.
@article{IIGUM_2013_6_4_a4,
     author = {M. V. Plekhanova},
     title = {Start control for degenerate linear distributed systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {53--68},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a4/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Start control for degenerate linear distributed systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 53
EP  - 68
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a4/
LA  - ru
ID  - IIGUM_2013_6_4_a4
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Start control for degenerate linear distributed systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 53-68
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a4/
%G ru
%F IIGUM_2013_6_4_a4
M. V. Plekhanova. Start control for degenerate linear distributed systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 53-68. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a4/

[1] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kn., Novosibirsk, 1998, 436 pp. | MR | Zbl

[2] A. V. Keller, “Sistemy leontevskogo tipa: klassy zadach s nachalnym usloviem Shouoltera–Sidorova i chislennye resheniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:2 (2010), 30–43 | Zbl

[3] M. V. Plekhanova, A. F. Islamova, “O razreshimosti zadach smeshannogo optimalnogo upravleniya lineinymi raspredelennymi sistemami”, Izv. vuzov. Matematika, 2011, no. 7, 37–47 | MR

[4] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 40–44 | MR

[5] M. V. Plekhanova, V. E. Fedorov, “Zadachi startovogo upravleniya dlya lineinykh uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matematika. Fizika. Khimiya, 2005, no. 6 (46), 43–49

[6] M. V. Plekhanova, V. E. Fedorov, “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR

[7] M. V. Plekhanova, V. E. Fedorov, “O suschestvovanii i edinstvennosti reshenii zadach optimalnogo upravleniya lineinymi raspredelennymi sistemami, ne razreshennymi otnositelno proizvodnoi po vremeni”, Izv. RAN. Ser. mat., 75:2 (2011), 177–194 | DOI | MR | Zbl

[8] P. I. Plotnikov, V. N. Starovoitov, “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl

[9] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp.

[10] N. A. Sidorov, Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Irkut. gos. un-t, Irkutsk, 1982, 311 pp. | MR

[11] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR

[12] V. E. Fedorov, “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennoi polugruppy operatorov”, Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2009, no. 20 (158), 12–19 | MR

[13] V. E. Fedorov, M. V. Plekhanova, “Optimalnoe upravlenie lineinymi uravneniyami sobolevskogo tipa”, Differents. uravneniya, 40:11 (2004), 1548–1556 | MR | Zbl

[14] V. E. Fedorov, M. V. Plekhanova, “Zadacha startovogo upravleniya dlya klassa polulineinykh raspredelennykh sistem sobolevskogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 259–267

[15] V. E. Fedorov, M. A. Sagadeeva, “Ogranichennye resheniya linearizovannoi sistemy uravnenii fazovogo polya”, Neklassicheskie uravneniya matematicheskoi fiziki, tr. seminara, Izd-vo In-ta matematiki, Novosibirsk, 2005, 275–284 | Zbl

[16] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kn., Novosibirsk, 1999, 350 pp.

[17] V. F. Chistyakov, A. A. Scheglova, Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003, 320 pp. | MR | Zbl

[18] S. I. Lyashko, Generalized Optimal Control of Linear Systems with Distributed Parameters, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 455 pp. | MR | Zbl

[19] R. E. Showalter, “Nonlinear degenerate evolution equations and partial differential equations of mixed type”, SIAM J. Math. Anal., 6:1 (1975), 25–42 | DOI | MR | Zbl

[20] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 568 pp. | MR | Zbl