@article{IIGUM_2013_6_4_a0,
author = {O. I. Drivotin and D. A. Ovsyannikov},
title = {Solutions of the {Vlasov} equation for charged particle beam in magnetic field},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {2--22},
year = {2013},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a0/}
}
TY - JOUR AU - O. I. Drivotin AU - D. A. Ovsyannikov TI - Solutions of the Vlasov equation for charged particle beam in magnetic field JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 2 EP - 22 VL - 6 IS - 4 UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a0/ LA - ru ID - IIGUM_2013_6_4_a0 ER -
%0 Journal Article %A O. I. Drivotin %A D. A. Ovsyannikov %T Solutions of the Vlasov equation for charged particle beam in magnetic field %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 2-22 %V 6 %N 4 %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a0/ %G ru %F IIGUM_2013_6_4_a0
O. I. Drivotin; D. A. Ovsyannikov. Solutions of the Vlasov equation for charged particle beam in magnetic field. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 4, pp. 2-22. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_4_a0/
[1] Yu. A. Budanov, “Raspredelenie fazovoi plotnosti v shestimernom fazovom prostranstve dlya intensivnykh puchkov ionov”, Zhurn. tekhn. fiziki, 54:6 (1984), 1068–1075
[2] A. D. Vlasov, “Samosoglasovannye tsilindricheskie puchki postoyannoi plotnosti”, Zhurn. tekhn. fiziki, 49:9 (1981), 1821–1826
[3] R. Davidson, Teoriya zaryazhennoi plazmy, Mir, M., 1978, 216 pp.
[4] O. I. Drivotin, D. A. Ovsyannikov, “Ob opredelenii statsionarnykh reshenii uravneniya Vlasova dlya aksialno-simmetrichnogo puchka zaryazhennykh chastits v prodolnom magnitnom pole”, Zhurn. vychisl. matematiki i mat. fiziki, 27:3 (1987), 416–427
[5] O. I. Drivotin, D. A. Ovsyannikov, “O novykh klassakh statsionarnykh reshenii uravneniya Vlasova dlya aksialno-simmetrichnogo puchka zaryazhennykh chastits s postoyannoi plotnostyu”, Zhurn. vychisl. matematiki i mat. fiziki, 29:8 (1989), 1245–1250 | MR
[6] O. I. Drivotin, D. A. Ovsyannikov, “O samosoglasovannykh raspredeleniyakh dlya puchka zaryazhennykh chastits v prodolnom magnitnom pole”, Dokl. RAN, 33:3 (1994), 284–287 | MR
[7] D. A. Ovsyannikov, O. I. Drivotin, Modelirovanie intensivnykh puchkov zaryazhennykh chastits, Izd-vo S.-Peterb. gos. un-ta, SPb., 2003, 176 pp.
[8] O. I. Drivotin, D. A. Ovsyannikov, “Samosoglasovannye raspredeleniya zaryazhennykh chastits v prodolnom magnitnom pole. I, II”, Vestn. S.-Peterb. un-ta. Ser. 10, Prikl. matematika. Informatika. Protsessy upravleniya, 2004, no. 1, 3–15; No 2, 70–81
[9] O. I. Drivotin, Matematicheskie osnovy teorii polya, Izd-vo S.-Peterb. gos. un-ta, SPb., 2010, 168 pp.
[10] V. P. Ermakov, “Differentsialnye uravneniya vtorogo poryadka. Usloviya integriruemosti v konechnom vide”, Univ. izv. Kiev, 20:9 (1880), 1–25
[11] I. M. Kapchinskii, Dinamika chastits v lineinykh rezonansnykh uskoritelyakh, Atomizdat, M., 1966, 312 pp.
[12] L. Brillouin, “A theorem of Larmor and its importance for electrons in magnetic fields”, Phys. Rev., 67:7–8 (1945), 260–266 | DOI
[13] C. Chen, R. Pakter, R. C. Davidson, “Rigid-rotor Vlasov equilibrium for an intense charged particle beam propagating through a periodic solenoidal magnetic field”, Phys. Rev. Lett., 79:2 (1997), 225–228 | DOI | MR
[14] R. C. Davidson, C. Chen, “Kinetic description of high intensity beam propagation through a periodic focusing field based on the nonlinear Vlasov–Maxwell equations”, Particle Accelerators, 59 (1998), 175–250
[15] R. C. Davidson, “Three-dimensional kinetic stability theorem for high-intensity charged particle beams”, Physics of Plasmas, 5:9 (1998), 3459–3468 | DOI | MR
[16] O. I. Drivotin, D. A. Ovsyannikov, “New classes of uniform distributions for charged particles in magnetic field”, Proc. 1997 Part. Accel. Conf., PAC'97 (Vancouver, B.C., Canada, 1997), 1943–1945
[17] O. I. Drivotin, D. A. Ovsyannikov, “Particle distributions for beam in electric field”, Proc. 1999 IEEE Part. Accel. Conf. (N. Y., NY, USA, 1999), 1857–1859
[18] O. I. Drivotin, D. A. Ovsyannikov, “Modeling of self-consistent distributions for longitudinnaly non-uniform beam”, Nuclear Instr. and Meth. in Physics Research A, 558:1 (2006), 112–118 | DOI
[19] O. I. Drivotin, D. A. Ovsyannikov, “Self-consistent distributions for charged particle beam in magnetic field”, Int. Journ. of Mod. Phys. A, 24:5 (2009), 816–842 | DOI | Zbl
[20] O. I. Drivotin, “Covariant formulation of the Vlasov equation”, Proc. of the 2011 Int. Particle Accelerators Conf., IPAC'2011 (San-Sebastian, Spain, 2011) http://accelconf.web.cern.ch/accelconf/ipac2011/papers/wepc114.pdf
[21] O. I. Drivotin, “Degenerate solutions of the Vlasov equation”, Proc. of the 2012 Russ. Particle Accelerators Conf., RUPAC'2012 (St.-Petersburg, 2012) http://accelconf.web.cern.ch/accelconf/rupac2012/papers/tuppb028.pdf
[22] R. L. Gluckstern, “Analytic model for halo formation in high current ion linacs”, Phys. Rev. Lett., 73:9 (1994), 1247–1250 | DOI
[23] R. L. Gluckstern, W.-H. Cheng, H. Ye, “Stability of a uniform-density breathing beam with circular cross-section”, Phys. Rev. Lett., 75:15 (1995), 2835–2838 | DOI
[24] R. L. Gluckstern, A. V. Fedotov, S. Kurennoy, R. Ryne, “Halo formation in three-dimensional bunches”, Phys. Rev. E, 58 (1998), 4977–4990 | DOI
[25] I. Hofmann, “Transport and focusing of high intensity unnetralized beams”, Applied charged particle optics, v. C, Very-high-density beams, ed. A. Septier, Academic Press, N. Y., 1983, 49–140
[26] I. Kapchinsky, V. Vladimirsky, “Limitations of proton beam current in a strong focusing linear accelerator, associated with beam space charge”, Proc. II Int. Conf. on High Energy Accelerators (Geneva, Cern, 1959), 274–288