Maximum principle for optimal control problem by thermal process
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123
Voir la notice de l'article provenant de la source Math-Net.Ru
An optimal control problem by thermal process is considered. Function of the right side of differential equation is non-linear and contains independent variables, control function and phase state. A classic necessary optimality condition is given for the optimal control problem.
Keywords:
thermal process; optimal control; necessary optimality condition; maximum principle.
@article{IIGUM_2013_6_3_a9, author = {V. P. Poplevko and E. A. Lutkovskaya and E. V. Tuchnolobova}, title = {Maximum principle for optimal control problem by thermal process}, journal = {The Bulletin of Irkutsk State University. Series Mathematics}, pages = {117--123}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/} }
TY - JOUR AU - V. P. Poplevko AU - E. A. Lutkovskaya AU - E. V. Tuchnolobova TI - Maximum principle for optimal control problem by thermal process JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 117 EP - 123 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/ LA - ru ID - IIGUM_2013_6_3_a9 ER -
%0 Journal Article %A V. P. Poplevko %A E. A. Lutkovskaya %A E. V. Tuchnolobova %T Maximum principle for optimal control problem by thermal process %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 117-123 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/ %G ru %F IIGUM_2013_6_3_a9
V. P. Poplevko; E. A. Lutkovskaya; E. V. Tuchnolobova. Maximum principle for optimal control problem by thermal process. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/