Maximum principle for optimal control problem by thermal process
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem by thermal process is considered. Function of the right side of differential equation is non-linear and contains independent variables, control function and phase state. A classic necessary optimality condition is given for the optimal control problem.
Keywords: thermal process; optimal control; necessary optimality condition; maximum principle.
@article{IIGUM_2013_6_3_a9,
     author = {V. P. Poplevko and E. A. Lutkovskaya and E. V. Tuchnolobova},
     title = {Maximum principle for optimal control problem by thermal process},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {117--123},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/}
}
TY  - JOUR
AU  - V. P. Poplevko
AU  - E. A. Lutkovskaya
AU  - E. V. Tuchnolobova
TI  - Maximum principle for optimal control problem by thermal process
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 117
EP  - 123
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/
LA  - ru
ID  - IIGUM_2013_6_3_a9
ER  - 
%0 Journal Article
%A V. P. Poplevko
%A E. A. Lutkovskaya
%A E. V. Tuchnolobova
%T Maximum principle for optimal control problem by thermal process
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 117-123
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/
%G ru
%F IIGUM_2013_6_3_a9
V. P. Poplevko; E. A. Lutkovskaya; E. V. Tuchnolobova. Maximum principle for optimal control problem by thermal process. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/