Maximum principle for optimal control problem by thermal process
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem by thermal process is considered. Function of the right side of differential equation is non-linear and contains independent variables, control function and phase state. A classic necessary optimality condition is given for the optimal control problem.
Keywords: thermal process; optimal control; necessary optimality condition; maximum principle.
@article{IIGUM_2013_6_3_a9,
     author = {V. P. Poplevko and E. A. Lutkovskaya and E. V. Tuchnolobova},
     title = {Maximum principle for optimal control problem by thermal process},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {117--123},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/}
}
TY  - JOUR
AU  - V. P. Poplevko
AU  - E. A. Lutkovskaya
AU  - E. V. Tuchnolobova
TI  - Maximum principle for optimal control problem by thermal process
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 117
EP  - 123
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/
LA  - ru
ID  - IIGUM_2013_6_3_a9
ER  - 
%0 Journal Article
%A V. P. Poplevko
%A E. A. Lutkovskaya
%A E. V. Tuchnolobova
%T Maximum principle for optimal control problem by thermal process
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 117-123
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/
%G ru
%F IIGUM_2013_6_3_a9
V. P. Poplevko; E. A. Lutkovskaya; E. V. Tuchnolobova. Maximum principle for optimal control problem by thermal process. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 117-123. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a9/

[1] A. G. Butkovskii, Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965, 474 pp. | MR

[2] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kn., Novosibirsk, 1999, 352 pp.

[3] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983, 424 pp. | MR

[4] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR

[5] V. A. Terletskii, E. V. Tuchnolobova, N. Yu. Ulyanova, “Metod posledovatelnykh priblizhenii v parabolicheskoi nachalno-kraevoi zadache”, Izv. Irkut. gos. un-ta. Ser. Matematika, 6:2 (2013), 77–83 | MR

[6] O. V. Vasilev, V. A. Srochko, V. A. Terletskii, Metody optimizatsii i ikh prilozheniya, v. 2, Optimalnoe upravlenie, Nauka. Sib. otd-nie, Novosibirsk, 1990, 151 pp. | MR