Detectability of linear systems of differential-algebraic equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 109-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an observed time varying system of linear ordinary differential equations with an identically degenerate matrix coefficient preceding the derivative of the desired vector function. We study detectability of such system under the assumptions of existence of a structural form, which are devided into “differential” and “algebraic” subsystems.
Keywords: differential-algebraic equations; structural form; detectability.
@article{IIGUM_2013_6_3_a8,
     author = {P. S. Petrenko},
     title = {Detectability of linear systems of differential-algebraic equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {109--116},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a8/}
}
TY  - JOUR
AU  - P. S. Petrenko
TI  - Detectability of linear systems of differential-algebraic equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 109
EP  - 116
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a8/
LA  - ru
ID  - IIGUM_2013_6_3_a8
ER  - 
%0 Journal Article
%A P. S. Petrenko
%T Detectability of linear systems of differential-algebraic equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 109-116
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a8/
%G ru
%F IIGUM_2013_6_3_a8
P. S. Petrenko. Detectability of linear systems of differential-algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 109-116. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a8/

[1] I. V. Gaishun, Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t matematiki NAN Belarusi, Minsk, 1999, 409 pp. | MR

[2] A. A. Scheglova, “Cuschestvovanie resheniya nachalnoi zadachi dlya vyrozhdennoi lineinoi gibridnoi sistemy s peremennymi koeffitsientami”, Izv. vuzov. Matematika, 2010, no. 9, 57–70

[3] K. E. Brenan, S. B. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, Philadelphia, 1996 | MR

[4] M. Ikeda, H. Maeda, S. Kodama, “Estimation and feedback in linear time-varying systems: a deterministic theory”, SIAM J. on Contr. and Opt., 13:2 (1975), 304–326 | DOI | MR

[5] G. W. Johnson, “A deterministic theory of estimation and control”, IEEE Trans. on Automatic Control, AC-14:4 (1969), 380–384 | DOI | MR

[6] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N. Y., 1989, 332 pp. | DOI | MR