A family of clones of monotone functions from multi-valued logic that are not finitely generated
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 97-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of clones of functions which are monotone with respect to a partially ordered set of width two are investigated.
Keywords: multi-valued logic; monotone functions; finite basis; chains of continuum cardinality.
@article{IIGUM_2013_6_3_a7,
     author = {D. Yu. Panin},
     title = {A family of clones of monotone functions from multi-valued logic that are not finitely generated},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {97--108},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a7/}
}
TY  - JOUR
AU  - D. Yu. Panin
TI  - A family of clones of monotone functions from multi-valued logic that are not finitely generated
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 97
EP  - 108
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a7/
LA  - ru
ID  - IIGUM_2013_6_3_a7
ER  - 
%0 Journal Article
%A D. Yu. Panin
%T A family of clones of monotone functions from multi-valued logic that are not finitely generated
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 97-108
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a7/
%G ru
%F IIGUM_2013_6_3_a7
D. Yu. Panin. A family of clones of monotone functions from multi-valued logic that are not finitely generated. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 97-108. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a7/

[1] O. S. Dudakova, “Ob odnom semeistve predpolnykh klassov funktsii $k$-znachnoi logiki, ne imeyuschikh konechnogo bazisa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2006, no. 2, 29–32 | MR

[2] O. S. Dudakova, “O klassakh funktsii $k$-znachnoi logiki, monotonnykh otnositelno mnozhestv shiriny dva”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2008, no. 1, 31–37 | MR

[3] O. S. Dudakova, “O konechnoi porozhdennosti predpolnykh klassov monotonnykh funktsii mnogoznachnoi logiki”, Mat. vopr. kibernetiki, 17, Fizmatlit, M., 2008, 13–104

[4] D. Yu. Panin, “Kriterii polnoty dlya nekotorykh klassov monotonnykh odnomestnykh funktsii v $P_k$”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2013, no. 3, 57–61 | MR

[5] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2008

[6] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46

[7] J. Demetrovis, L. Hannak, “Construction of large sets of clones”, Zeitschr. f. Math. Logik und Grundlagen. d. Math., 33 (1987), 127–133 | DOI | MR

[8] D. Lau, Function algebras on finite sets: a basic course on many-valued logic and clone theory, Springer Monographs in Mathematics, Springer, Berlin, 2006, 668 pp. | MR

[9] E. L. Post, “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43:3 (1921), 163–185 | DOI | MR

[10] E. L. Post, The two-valued iterative systems of mathematical logic, Annals of Math. Studies, 5, Princeton Univ. Press, 1941 | MR

[11] R. Pöschel, L. A. Kaluz̃nin, Funktionen- und Relationenalgebren, Berlin, 1979

[12] A. Salomaa, “On the heights of closed sets of operations in finite algebras”, Ann. Acad. Sci. Fennicae. Ser. AI, 363 (1965), 12 pp. | MR

[13] A. Salomaa, “On some algebraic notions in the theory of truth-functions”, Acta Phillos. Fennicae, 18 (1965), 193–201 | MR

[14] G. Tardos, “A not finitely generated maximal clone of monotone operations”, Order, 3 (1986), 211–218 | DOI | MR