@article{IIGUM_2013_6_3_a6,
author = {T. I. Nekrasova},
title = {Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {88--96},
year = {2013},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a6/}
}
TY - JOUR AU - T. I. Nekrasova TI - Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 88 EP - 96 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a6/ LA - ru ID - IIGUM_2013_6_3_a6 ER -
%0 Journal Article %A T. I. Nekrasova %T Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 88-96 %V 6 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a6/ %G ru %F IIGUM_2013_6_3_a6
T. I. Nekrasova. Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 88-96. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a6/
[1] E. K. Leinartas, A. P. Lyapin, “O ratsionalnosti mnogomernykh vozvratnykh stepennykh ryadov”, Zhurn. Sib. feder. un-ta, 2:4 (2009), 449–455
[2] T. I. Nekrasova, “Zadacha Koshi dlya mnogomernogo raznostnogo uravneniya v konusakh tselochislennoi reshetki”, Zhurn. Sib. feder. un-ta, 5:4 (2012), 576–580
[3] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990, 440 pp. | MR
[4] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2009, 767 pp. | MR
[5] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR
[6] A. de Moivre, “De fractionibus algebraicis radicalitate immunibus ad fractiones simpliciores reducendis, deque summandis terminis quarumdam serierum aequali intervallo a se distantibus”, Philosophical transactions, 32:1722/3 (1724), 176
[7] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Math., 151 (2000), 45–70 | DOI | MR