@article{IIGUM_2013_6_3_a5,
author = {P. D. Lebedev and D. S. Bukharov},
title = {Approximation of polygons with the best set of circles},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {72--87},
year = {2013},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/}
}
TY - JOUR AU - P. D. Lebedev AU - D. S. Bukharov TI - Approximation of polygons with the best set of circles JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 72 EP - 87 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/ LA - ru ID - IIGUM_2013_6_3_a5 ER -
P. D. Lebedev; D. S. Bukharov. Approximation of polygons with the best set of circles. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/
[1] V. G. Boltyanskii, I. Ts. Gokhberg, Razbienie figur na menshie chasti, Populyarnye lektsii po matematike, 50, Nauka, M., 1971, 88 pp. | MR
[2] D. S. Bukharov, A. L. Kazakov, “Programmnaya sistema «VIGOLT» dlya resheniya zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Vychisl. metody i programmirovanie, 2012, no. 2, 65–74
[3] A. L. Garkavi, “O suschestvovanii nailuchshei seti i nailuchshego poperechnika mnozhestva v banakhovom prostranstve”, Uspekhi mat. nauk, 15:2 (1960), 210–211
[4] A. L. Garkavi, “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. mat., 26:1 (1962), 87–106 | MR
[5] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (1964), 139–145 | MR
[6] A. L. Garkavi, “O metode tsiklicheskogo spuska v zadache nailuchshego priblizheniya”, Mat. zametki, 27:4 (1980), 549–558 | MR
[7] A. L. Garkavi, “Ob uslovnom chebyshevskom tsentre kompaktnogo mnozhestva nepreryvnykh funktsii”, Mat. zametki, 14:4 (1973), 469–478 | MR
[8] M. L. Gerver, “O razbienii mnozhestv na chasti menshego diametra: teoremy i kontrprimery”, Matematicheskoe prosveschenie. Ser. 3, 1999, no. 3, 168–183 | MR
[9] M. I. Gusev, “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. IMM UrO RAN, 15, no. 4, 2009, 82–94
[10] A. L. Kazakov, A. A. Lempert, “Ob odnom podkhode k resheniyu zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Avtomatika i telemekhanika, 2011, no. 7, 50–57 | MR
[11] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[12] A. A. Lempert, A. L. Kazakov, D. S. Bukharov, “Matematicheskaya model i programmnaya sistema dlya resheniya zadachi razmescheniya logisticheskikh ob'ektov”, Upravlenie bolshimi sistemami, 2013, no. 41, 270–284
[13] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR
[14] P. D. Lebedev, V. N. Ushakov, “Approksimatsiya mnozhestv na ploskosti optimalnymi naborami krugov”, Avtomatika i telemekhanika, 2012, no. 3, 79–90
[15] F. Preparata, M. Sheimos, Vychislitelnaya geometriya, Mir, M., 1989, 478 pp. | MR
[16] E. N. Sosov, “Ob approksimativnykh svoistvakh mnozhestv v spetsialnom metricheskom prostranstve”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR
[17] E. N. Sosov, Vvedenie v metricheskuyu geometriyu, ucheb. posobie, v. 2, Kazan. gos. un-t, Kazan, 2008, 29 pp.
[18] E. N. Sosov, “Metricheskoe prostranstvo vsekh $N$-setei geodezicheskogo prostranstva”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-mat. nauki, 15:4 (2009), 136–149
[19] V. N. Ushakov, A. A. Uspenskii, “Ob odnom dopolnenii k svoistvu stabilnosti v differentsialnykh igrakh”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 271, 2010, 299–318 | MR
[20] V. N. Ushakov, A. R. Matviichuk, P. D. Lebedev, “Defekt stabilnosti v igrovoi zadache o sblizhenii v moment”, Vestn. Udmurt. un-ta. Matematika, mekhanika, kompyuter. nauki, 2010, no. 3, 87–103
[21] A. B. Kurzhanski, I. Valyi, Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 220 pp. | MR