Approximation of polygons with the best set of circles
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 72-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The best approximations of flat polygons with circles are considered. The main component of their construction is the best net. It is the generalized case of the Chebyshev center. About the best segmentation based on the optics-geometrical approach.
Keywords: Chebyshev center; best net; Hausdorff distance; computational geometry.
@article{IIGUM_2013_6_3_a5,
     author = {P. D. Lebedev and D. S. Bukharov},
     title = {Approximation of polygons with the best set of circles},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {72--87},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - D. S. Bukharov
TI  - Approximation of polygons with the best set of circles
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 72
EP  - 87
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/
LA  - ru
ID  - IIGUM_2013_6_3_a5
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A D. S. Bukharov
%T Approximation of polygons with the best set of circles
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 72-87
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/
%G ru
%F IIGUM_2013_6_3_a5
P. D. Lebedev; D. S. Bukharov. Approximation of polygons with the best set of circles. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/

[1] V. G. Boltyanskii, I. Ts. Gokhberg, Razbienie figur na menshie chasti, Populyarnye lektsii po matematike, 50, Nauka, M., 1971, 88 pp. | MR

[2] D. S. Bukharov, A. L. Kazakov, “Programmnaya sistema «VIGOLT» dlya resheniya zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Vychisl. metody i programmirovanie, 2012, no. 2, 65–74

[3] A. L. Garkavi, “O suschestvovanii nailuchshei seti i nailuchshego poperechnika mnozhestva v banakhovom prostranstve”, Uspekhi mat. nauk, 15:2 (1960), 210–211

[4] A. L. Garkavi, “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. mat., 26:1 (1962), 87–106 | MR

[5] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (1964), 139–145 | MR

[6] A. L. Garkavi, “O metode tsiklicheskogo spuska v zadache nailuchshego priblizheniya”, Mat. zametki, 27:4 (1980), 549–558 | MR

[7] A. L. Garkavi, “Ob uslovnom chebyshevskom tsentre kompaktnogo mnozhestva nepreryvnykh funktsii”, Mat. zametki, 14:4 (1973), 469–478 | MR

[8] M. L. Gerver, “O razbienii mnozhestv na chasti menshego diametra: teoremy i kontrprimery”, Matematicheskoe prosveschenie. Ser. 3, 1999, no. 3, 168–183 | MR

[9] M. I. Gusev, “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. IMM UrO RAN, 15, no. 4, 2009, 82–94

[10] A. L. Kazakov, A. A. Lempert, “Ob odnom podkhode k resheniyu zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Avtomatika i telemekhanika, 2011, no. 7, 50–57 | MR

[11] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[12] A. A. Lempert, A. L. Kazakov, D. S. Bukharov, “Matematicheskaya model i programmnaya sistema dlya resheniya zadachi razmescheniya logisticheskikh ob'ektov”, Upravlenie bolshimi sistemami, 2013, no. 41, 270–284

[13] K. Leikhtveis, Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[14] P. D. Lebedev, V. N. Ushakov, “Approksimatsiya mnozhestv na ploskosti optimalnymi naborami krugov”, Avtomatika i telemekhanika, 2012, no. 3, 79–90

[15] F. Preparata, M. Sheimos, Vychislitelnaya geometriya, Mir, M., 1989, 478 pp. | MR

[16] E. N. Sosov, “Ob approksimativnykh svoistvakh mnozhestv v spetsialnom metricheskom prostranstve”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR

[17] E. N. Sosov, Vvedenie v metricheskuyu geometriyu, ucheb. posobie, v. 2, Kazan. gos. un-t, Kazan, 2008, 29 pp.

[18] E. N. Sosov, “Metricheskoe prostranstvo vsekh $N$-setei geodezicheskogo prostranstva”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-mat. nauki, 15:4 (2009), 136–149

[19] V. N. Ushakov, A. A. Uspenskii, “Ob odnom dopolnenii k svoistvu stabilnosti v differentsialnykh igrakh”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 271, 2010, 299–318 | MR

[20] V. N. Ushakov, A. R. Matviichuk, P. D. Lebedev, “Defekt stabilnosti v igrovoi zadache o sblizhenii v moment”, Vestn. Udmurt. un-ta. Matematika, mekhanika, kompyuter. nauki, 2010, no. 3, 87–103

[21] A. B. Kurzhanski, I. Valyi, Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 220 pp. | MR