Approximation of polygons with the best set of circles
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 72-87
Voir la notice de l'article provenant de la source Math-Net.Ru
The best approximations of flat polygons with circles are considered. The main component of their construction is the best net. It is the generalized case of the Chebyshev center. About the best segmentation based on the optics-geometrical approach.
Keywords:
Chebyshev center; best net; Hausdorff distance; computational geometry.
@article{IIGUM_2013_6_3_a5, author = {P. D. Lebedev and D. S. Bukharov}, title = {Approximation of polygons with the best set of circles}, journal = {The Bulletin of Irkutsk State University. Series Mathematics}, pages = {72--87}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/} }
TY - JOUR AU - P. D. Lebedev AU - D. S. Bukharov TI - Approximation of polygons with the best set of circles JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 72 EP - 87 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/ LA - ru ID - IIGUM_2013_6_3_a5 ER -
P. D. Lebedev; D. S. Bukharov. Approximation of polygons with the best set of circles. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a5/