@article{IIGUM_2013_6_3_a4,
author = {V. B. Larionov},
title = {Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {60--71},
year = {2013},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/}
}
TY - JOUR AU - V. B. Larionov TI - Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 60 EP - 71 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/ LA - ru ID - IIGUM_2013_6_3_a4 ER -
%0 Journal Article %A V. B. Larionov %T Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 60-71 %V 6 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/ %G ru %F IIGUM_2013_6_3_a4
V. B. Larionov. Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/
[1] V. B. Larionov, Zamknutye klassy $k$-znachnoi logiki, soderzhaschie klassy monotonnykh ili samodvoistvennykh funktsii, Dis. ... kand. fiz.-mat. nauk, 2009, 157 pp.
[2] V. B. Larionov, “O monotonnykh zamknutykh klassakh funktsii mnogoznachnoi logiki s beskonechnoi nadstrukturoi”, Materialy VII molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (18–23 maya 2009 g.), IPM im. M. V. Keldysha RAN, M., 2009, 7–12
[3] V. B. Larionov, “O polozhenii nekotorykh klassov monotonnykh $k$-znachnykh funktsii v reshetke zamknutykh klassov”, Diskretnaya matematika, 21:5 (2009), 111–116
[4] V. V. Martynyuk, “Issledovanie nekotorykh klassov funktsii v mnogoznachnykh logikakh”, Problemy kibernetiki, 3, Nauka, M., 1960, 49–61
[5] S. S. Marchenkov, Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000, 128 pp. | MR
[6] V. G. Bodnarchuk, V. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR
[7] S. V. Yablonskii, G. P. Gavrilov, A. A. Nabebin, Predpolnye klassy v mnogoznachnykh logikakh, Izd. dom MEI, M., 1997, 144 pp. | MR
[8] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46
[9] E. L. Post, Two valued iterative systems of mathematical logic, Annals of Math. Studies, 5, Princeton Univ. Press, Princeton, 1941, 122 pp. | MR
[10] I. G. Rosenberg, “La structure des fonctions de plusiers variables sur un ensemble fini”, Comptes Rendus Acad. Sci. Paris, 260 (1965), 3817–3819 | MR