Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper continues author's investigation of substructure for classes of monotone functions. Criterion of existance of infinite substructure for some family of classes of monotone functions.
Keywords:
multivalued logic; lattice of closed classes; monotone functions.
@article{IIGUM_2013_6_3_a4,
author = {V. B. Larionov},
title = {Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {60--71},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/}
}
TY - JOUR AU - V. B. Larionov TI - Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 60 EP - 71 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/ LA - ru ID - IIGUM_2013_6_3_a4 ER -
%0 Journal Article %A V. B. Larionov %T Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 60-71 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/ %G ru %F IIGUM_2013_6_3_a4
V. B. Larionov. Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/