Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues author's investigation of substructure for classes of monotone functions. Criterion of existance of infinite substructure for some family of classes of monotone functions.
Keywords: multivalued logic; lattice of closed classes; monotone functions.
@article{IIGUM_2013_6_3_a4,
     author = {V. B. Larionov},
     title = {Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {60--71},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/}
}
TY  - JOUR
AU  - V. B. Larionov
TI  - Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 60
EP  - 71
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/
LA  - ru
ID  - IIGUM_2013_6_3_a4
ER  - 
%0 Journal Article
%A V. B. Larionov
%T Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 60-71
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/
%G ru
%F IIGUM_2013_6_3_a4
V. B. Larionov. Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/

[1] V. B. Larionov, Zamknutye klassy $k$-znachnoi logiki, soderzhaschie klassy monotonnykh ili samodvoistvennykh funktsii, Dis. ... kand. fiz.-mat. nauk, 2009, 157 pp.

[2] V. B. Larionov, “O monotonnykh zamknutykh klassakh funktsii mnogoznachnoi logiki s beskonechnoi nadstrukturoi”, Materialy VII molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (18–23 maya 2009 g.), IPM im. M. V. Keldysha RAN, M., 2009, 7–12

[3] V. B. Larionov, “O polozhenii nekotorykh klassov monotonnykh $k$-znachnykh funktsii v reshetke zamknutykh klassov”, Diskretnaya matematika, 21:5 (2009), 111–116

[4] V. V. Martynyuk, “Issledovanie nekotorykh klassov funktsii v mnogoznachnykh logikakh”, Problemy kibernetiki, 3, Nauka, M., 1960, 49–61

[5] S. S. Marchenkov, Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000, 128 pp. | MR

[6] V. G. Bodnarchuk, V. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR

[7] S. V. Yablonskii, G. P. Gavrilov, A. A. Nabebin, Predpolnye klassy v mnogoznachnykh logikakh, Izd. dom MEI, M., 1997, 144 pp. | MR

[8] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46

[9] E. L. Post, Two valued iterative systems of mathematical logic, Annals of Math. Studies, 5, Princeton Univ. Press, Princeton, 1941, 122 pp. | MR

[10] I. G. Rosenberg, “La structure des fonctions de plusiers variables sur un ensemble fini”, Comptes Rendus Acad. Sci. Paris, 260 (1965), 3817–3819 | MR