Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues author's investigation of substructure for classes of monotone functions. Criterion of existance of infinite substructure for some family of classes of monotone functions.
Keywords: multivalued logic; lattice of closed classes; monotone functions.
@article{IIGUM_2013_6_3_a4,
     author = {V. B. Larionov},
     title = {Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {60--71},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/}
}
TY  - JOUR
AU  - V. B. Larionov
TI  - Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 60
EP  - 71
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/
LA  - ru
ID  - IIGUM_2013_6_3_a4
ER  - 
%0 Journal Article
%A V. B. Larionov
%T Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 60-71
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/
%G ru
%F IIGUM_2013_6_3_a4
V. B. Larionov. Criterion of existance of infinite substructure for some classes of monotone $k$-valued functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 60-71. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a4/