Determining of velocity field for image processing problems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 48-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work two methods on determining of velocity field for radionuclide image processing problems are considered. In both cases the problem add up to solving linear systems of special sort by block iterative methods, the convergence of this methods is investigated.
Keywords: optical flow; velocity field; block iterative methods; convergence of block iterative methods; radionuclide images.
@article{IIGUM_2013_6_3_a3,
     author = {E. D. Kotina and G. A. Pasechnaya},
     title = {Determining of velocity field for image processing problems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {48--59},
     year = {2013},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a3/}
}
TY  - JOUR
AU  - E. D. Kotina
AU  - G. A. Pasechnaya
TI  - Determining of velocity field for image processing problems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 48
EP  - 59
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a3/
LA  - ru
ID  - IIGUM_2013_6_3_a3
ER  - 
%0 Journal Article
%A E. D. Kotina
%A G. A. Pasechnaya
%T Determining of velocity field for image processing problems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 48-59
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a3/
%G ru
%F IIGUM_2013_6_3_a3
E. D. Kotina; G. A. Pasechnaya. Determining of velocity field for image processing problems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 48-59. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a3/

[1] M. A. Arlychev, V. L. Novikov, A. V. Sidorov, A. M. Fialkovskii, E. D. Kotina, D. A. Ovsyannikov, V. A. Ploskikh, “Dvukhdetektornyi odnofotonnyi emissionnyi gamma-tomograf EFATOM”, Zhurn. tekhn. fiziki, 79:10 (2009), 138

[2] E. D. Kotina, “K teorii opredeleniya polya vektora peremescheniya na osnove uravneniya perenosa dlya diskretnogo sluchaya”, Vestn. S.-Peterb. un-ta. Ser. 10, Prikl. matematika, informatika, protsessy upravleniya, 2010, no. 3, 38–43

[3] E. D. Kotina, “Obrabotka dannykh radionuklidnykh issledovanii”, Vopr. atomnoi nauki i tekhniki. Ser. Yader.-fiz. issled., 2012, no. 3(79), 195–198

[4] E. D. Kotina, “O skhodimosti blochnykh iteratsionnykh metodov”, Izv. Irkut. gos. un-ta, 5:3 (2012), 41–55

[5] E. D. Kotina, “Programmnyi kompleks «Diagnostika» dlya obrabotki radionuklidnykh issledovanii”, Vestn. S.-Peterb. un-ta. Ser. 10, Prikl. matematika, informatika, protsessy upravleniya, 2010, no. 2, 100–113

[6] E. D. Kotina, “Programmnyi kompleks obrabotki radionuklidnykh issledovanii”, Vestn. S.-Peterb. gos. un-ta tekhnologii i dizaina. Ser. 1, Estestv. i tekhn. nauki, 2010, no. 1, 43–51

[7] E. D. Kotina, K. M. Maksimov, “Korrektsiya dvizheniya pri tomograficheskikh i planarnykh radionuklidnykh issledovaniyakh”, Vestn. S.-Peterb. Un-ta. Ser. 10, Prikl. matematika, informatika, protsessy upravleniya, 2011, 29–36

[8] E. N. Ostroumov, E. D. Kotina, O. R. Senchenko, A. B. Mironkov, “Radionuklidnye metody v kardiologicheskoi klinike”, Serdtse: zhurn. dlya prakt. vrachei, 9:3 (2010), 190–195

[9] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 285 pp. | MR

[10] P. Anandan, “A computational framework and an algorithm for the measurement of visual motion”, International Journal of Computer Vision, 2 (1989), 283–310 | DOI

[11] J. Barron, D. Fleet, “Performance of optical flow techniques”, International Journal of Computer Vision, 12 (1994), 43–77 | DOI

[12] F. Bergholm, S. Carlsson, “A theory of optical flow”, Computer vision. Graphics and Image Processing: Image Understanding, 53:2 (1991), 171–188

[13] J. A. Cooper, P. H. Neumann, B. K. McCandless, “Detection of patient motion during tomographic myocardial perfusion imaging”, Journal of Nuclear Medicine, 34 (1993), 1341–1348

[14] D. J. Fleet, Y. Weiss, “Optical flow estimation”, Mathematical models for Computer Vision: The Handbook, Springer, 2005, 24 pp.

[15] G. Germano et al., “Detection and correction of patient motion in dynamic and static myocardial SPECT using a multi-detector camera”, Journal of Nuclear Medicine, 34 (1993), 1394–1395

[16] B. K. P. Horn, B. G. Schunck, “Determining optical flow”, Artificial intelligence, 17 (1981), 185–203 | DOI

[17] E. D. Kotina, V. A. Ploskikh, “Data Processing and Quantitation in Nuclear Medicine”, Proceedings of RuPAC 2012, 2012, 526–528 http://accelconf.web.cern.ch/AccelConf/rupac2012/

[18] N. Matsumoto et al., “Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT”, Journal of Nuclear Medicine, 42 (2001), 687–694

[19] D. A. Ovsyannikov, E. D. Kotina, “Determination of velocity field by given density distribution of charged particles”, Problems of Atomic Science and Technology, 3:79 (2012), 122–125

[20] D. A. Ovsyannikov, E. D. Kotina, “Reconstruction of velocity field”, Proceedings of ICAP2012 (Rostock-Warnemunde, Germany, 2012), 256–258 http://accelconf.web.cern.ch/AccelConf/ICAP2012

[21] N. Papenberg et al., “Highly Accurate Optic Flow Computation with Theoretically Justified Warping”, International Journal of Computer Vision, 67:2 (2006), 141–158 | DOI

[22] M. F. Prigent, M. Hyun, D. S. Berman, A. Rozanski, “Effect of motion on Thallium-201 SPECT”, Journal of Nuclear Medicine, 34 (1993), 1845–1850