Mots-clés : contains.
@article{IIGUM_2013_6_3_a0,
author = {Y. V. Akulov},
title = {Criteria of decomposability of the {Post's} clones},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {2--24},
year = {2013},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a0/}
}
Y. V. Akulov. Criteria of decomposability of the Post's clones. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 3, pp. 2-24. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_3_a0/
[1] Ya. V. Akulov, “O polnote sistem funktsii dlya klassov rasshirennoi superpozitsii”, Vestn. MGU. Matematika. Mekhanika, 2011, no. 1, 36–41
[2] Yu. V. Golunkov, “Polnota sistem funktsii v operatornykh algoritmakh, realizuyuschikh funktsii $k$-znachnoi logiki”, Veroyatnost. metody i kibernetika, 1980, no. 17, 23–34 | MR
[3] O. M. Kasim-Zade, “O metricheskikh svoistvakh obobschennykh invariantnykh klassov”, Matematicheskie voprosy kibernetiki, 15, Nauka, M., 2006, 9–34
[4] Yu. V. Kuznetsov, “O klassakh bulevykh funktsii, invariantnykh otnositelno otozhdestvleniya peremennykh”, Dokl. AN SSSR, 290:4 (1986), 780–785 | MR
[5] A. V. Kuznetsov, “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, M., 1979, 5–33
[6] S. S. Marchenkov, “Osnovnye otnosheniya $S$-klassifikatsii funktsii mnogoznachnoi logiki”, Diskret. matematika, 8:1 (1996), 99–128 | DOI | MR
[7] S. S. Marchenkov, A. B. Ugolnikov, Zamknutye klassy bulevykh funktsii, Izd-vo IPM AN SSSR, M., 1990 | MR
[8] S. S. Marchenkov, Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000 | MR
[9] Nguen Van Khoa, “O semeistvakh zamknutykh klassov $k$-znachnoi logiki, sokhranyaemykh vsemi avtomorfizmami”, Diskret. matematika, 5:4 (1993), 87–108 | MR
[10] V. D. Solovev, “Zamknutye klassy v $k$-znachnoi logike s operatsiei razvetvleniya po predikatam”, Diskret. matematika, 2:4 (1990), 18–25 | MR
[11] V. A. Taimanov, “O funktsionalnykh sistemakh $k$-znachnoi logiki s operatsiyami programmnogo tipa”, Dokl. AN SSSR, 268:6 (1983), 1307–1310 | MR
[12] O. S. Tarasova, “Klassy $k$-znachnoi logiki, zamknutye otnositelno rasshirennoi operatsii superpozitsii”, Vestn. MGU. Matematika. Mekhanika, 2001, no. 6, 54–57 | MR
[13] O. S. Tarasova, “Klassy funktsii trekhznachnoi logiki, zamknutye otnositelno operatsii superpozitsii i perestanovok”, Matematicheskie voprosy kibernetiki, 13, Fizmatlit, M., 2004, 59–112 | MR
[14] A. B. Ugolnikov, “O zamknutykh klassakh Posta”, Izv. vuzov. Matematika, 1988, no. 7(314), 79–88 | MR
[15] A. B. Ugolnikov, Klassy Posta, Izd-vo TsPI pri mekh.-mat. fak. MGU im. M. V. Lomonosova, M., 2008
[16] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2006
[17] S. V. Yablonskii, “O klassakh funktsii algebry logiki, dopuskayuschikh prostuyu skhemnuyu realizatsiyu”, Uspekhi mat. nauk, 12:6(78) (1957), 189–196 | MR
[18] S. V. Yablonskii, “Ob algoritmicheskikh trudnostyakh sinteza minimalnykh kontaktnykh skhem”, Problemy kibernetiki, 1959, no. 2, 75–121
[19] S. V. Yablonskii, G. P. Gavrilov, V. B. Kudryavtsev, Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR
[20] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46
[21] E. L. Post, Two-valued iterative systems of mathematical logic, Annals of Math. Studies, 5, Princeton Univ. Press, Princeton–London, 1941 | MR