Method of successive approximations of parabolic initial-boundary problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 77-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness of generalized solution of an initial-boundary problem of parabolic equation with discontinuous enterance data with respect to independent variables and nonlinear right part of equation with respect to spacial variables is received by method of successive approximations.
Keywords: initial-boundary problem, fundamental solution, method of successive approximations.
Mots-clés : parabolic equation
@article{IIGUM_2013_6_2_a7,
     author = {V. A. Terletsky and E. V. Tuchnolobova and N. Yu. Ulyanova},
     title = {Method of successive approximations of parabolic initial-boundary problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {77--83},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a7/}
}
TY  - JOUR
AU  - V. A. Terletsky
AU  - E. V. Tuchnolobova
AU  - N. Yu. Ulyanova
TI  - Method of successive approximations of parabolic initial-boundary problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 77
EP  - 83
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a7/
LA  - ru
ID  - IIGUM_2013_6_2_a7
ER  - 
%0 Journal Article
%A V. A. Terletsky
%A E. V. Tuchnolobova
%A N. Yu. Ulyanova
%T Method of successive approximations of parabolic initial-boundary problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 77-83
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a7/
%G ru
%F IIGUM_2013_6_2_a7
V. A. Terletsky; E. V. Tuchnolobova; N. Yu. Ulyanova. Method of successive approximations of parabolic initial-boundary problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 77-83. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a7/

[1] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978, 688 pp. | MR

[2] F. P. Vasilev, Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[3] Dzh. Sansone, Obyknovennye differentsialnye uravneniya, v. 2, Inostr. lit., M., 1954, 415 pp.

[4] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, Inostr. lit., M., 1958, 474 pp.

[5] V. A. Terletskii, “Obobschennoe reshenie odnomernykh polulineinykh giperbolicheskikh sistem so smeshannymi usloviyami”, Izv. vuzov. Matematika, 2004, no. 12, 75–83 | MR

[6] V. A. Terletskii, “Obobschennoe reshenie mnogomernykh polulineinykh giperbolicheskikh sistem”, Izv. vuzov. Matematika, 2001, no. 12, 68–76 | MR | Zbl

[7] V. A. Terletskii, “Obobschennoe reshenie v zadachakh optimalnogo upravleniya giperbolicheskimi sistemami”, Izv. vuzov. Matematika, 2004, no. 4, 68–78 | MR

[8] V. A. Terletskii, E. A. Lutkovskaya, “Obobschennoe reshenie nelineinogo volnovogo uravneniya s nelineinymi granichnymi usloviyami pervogo, vtorogo i tretego roda”, Differents. uravneniya, 45:3 (2009), 403–415 | MR | Zbl

[9] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979, 392 pp. | MR | Zbl

[10] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983, 424 pp. | MR