On the structure of closed classes containing some classes of monotone functions in multivalued logic
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider closed classes of monotone functions in multivalued logic with respect to partially ordered sets that have a unique minimal element. We build an infinite set of such classes, where each class is contained in an infinite number of closed classes.
Keywords: multivalued logic; monotone function; structure; predicate.
@article{IIGUM_2013_6_2_a3,
     author = {V. B. Larionov and V. S. Fedorova},
     title = {On the structure of closed classes containing some classes of monotone functions in multivalued logic},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {38--47},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a3/}
}
TY  - JOUR
AU  - V. B. Larionov
AU  - V. S. Fedorova
TI  - On the structure of closed classes containing some classes of monotone functions in multivalued logic
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 38
EP  - 47
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a3/
LA  - ru
ID  - IIGUM_2013_6_2_a3
ER  - 
%0 Journal Article
%A V. B. Larionov
%A V. S. Fedorova
%T On the structure of closed classes containing some classes of monotone functions in multivalued logic
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 38-47
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a3/
%G ru
%F IIGUM_2013_6_2_a3
V. B. Larionov; V. S. Fedorova. On the structure of closed classes containing some classes of monotone functions in multivalued logic. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 38-47. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a3/

[1] V. G. Bodnarchuk, V. A. Kaluzhnin, V. N. Kotov, B. A. Romov, “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR | Zbl

[2] V. B. Larionov, Zamknutye klassy $k$-znachnoi logiki, soderzhaschie klassy monotonnykh ili samodvoistvennykh funktsii, Dis. ... kand. fiz.-mat. nauk, 2009, 157 pp.

[3] V. B. Larionov, “O polozhenii nekotorykh klassov monotonnykh $k$-znachnykh funktsii v reshetke zamknutykh klassov”, Diskret. matematika, 21:5 (2009), 111–116

[4] V. B. Larionov, V. S. Fedorova, “Kriterii beskonechnosti nadstruktury nekotorykh klassov monotonnykh funktsii mnogoznachnoi logiki”, Kombinatornye konfiguratsii i ikh primeneniya, Materialy 12-go mezhvuz. nauch.-prakt. seminara (Kirovograd, 14–15 okt. 2011 g.), Kirovograd, 2011, 80–84

[5] V. B. Larionov, V. S. Fedorova, “O slozhnosti nadstruktury klassov monotonnykh $k$-znachnykh funktsii spetsialnogo vida”, Izv. Irkut. gos. un-ta. Ser. Matematika, 5:1 (2012), 70–79 | MR | Zbl

[6] V. V. Martynyuk, “Issledovanie nekotorykh klassov funktsii v mnogoznachnykh logikakh”, Problemy kibernetiki, 3, Nauka, M., 1960, 49–61

[7] S. V. Yablonskii, G. P. Gavrilov, A. A. Nabebin, Predpolnye klassy v mnogoznachnykh logikakh, Izd. dom MEI, M., 1997, 144 pp. | MR

[8] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, DAN SSSR, 127:1 (1959), 44–46 | Zbl

[9] E. L. Post, “Two valued iterative systems of mathematical logic”, Annals of Math. Studies, 5, Princeton Univ. Press, Princeton, 1941, 122 | MR | Zbl

[10] I. G. Rosenberg, “La structure des fonctions de plusiers variables sur un ensemble fini”, Comptes Rendus Acad. Sci. Paris, 260 (1965), 3817–3819 | MR | Zbl