@article{IIGUM_2013_6_2_a2,
author = {O. V. Kravtsova},
title = {Semifield planes of even order that admit the baer involution},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {26--37},
year = {2013},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/}
}
O. V. Kravtsova. Semifield planes of even order that admit the baer involution. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 26-37. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/
[1] O. V. Kravtsova, P. K. Kurshakova, “K voprosu ob izomorfizme polupolevykh ploskostei”, Vestn. KGTU. Mat. metody i modelirovanie, 2006, no. 42, 13–19
[2] V. M. Levchuk, S. V. Panov, P. K. Shtukkert, “Voprosy perechisleniya proektivnykh ploskostei i latinskikh pryamougolnikov”, Mekhanika i modelirovanie, SibGAU, Krasnoyarsk, 2012, 56–70
[3] N. D. Podufalov, B. K. Durakov, O. V. Kravtsova, E. B. Durakov, “O polupolevykh ploskostyakh poryadka $16^2$”, Sib. mat. zhurn., 37:3 (1996), 616–623 | MR | Zbl
[4] M. Biliotti, V. Jha, N. L. Johnson, G. Menichetti, “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl
[5] H. Huang, N. L. Johnson, “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl
[6] D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New York, 1973, 324 pp. | MR | Zbl
[7] O. V. Kravtsova, S. V. Panov, I. V. Shevelyova, “Some results on isomorphisms of finite semifield planes”, Journal of Siberian Federal University. Mathematics, 6:1 (2013), 33–39 | MR
[8] N. D. Podufalov, “On spread sets and collineations of projective planes”, Contem. Math., 131, no. 1, 1992, 697–705 | DOI | MR | Zbl