Semifield planes of even order that admit the baer involution
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 26-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author extend an approach to construct and classify the semifield projective planes using the linear space and spread set. The spread set matrix representation for any semifield plane of even order that admits the baer involution is constructed.
Keywords: semifield plane; spread set; baer involution; isomorphism; collineation group.
@article{IIGUM_2013_6_2_a2,
     author = {O. V. Kravtsova},
     title = {Semifield planes of even order that admit the baer involution},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {26--37},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/}
}
TY  - JOUR
AU  - O. V. Kravtsova
TI  - Semifield planes of even order that admit the baer involution
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 26
EP  - 37
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/
LA  - ru
ID  - IIGUM_2013_6_2_a2
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%T Semifield planes of even order that admit the baer involution
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 26-37
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/
%G ru
%F IIGUM_2013_6_2_a2
O. V. Kravtsova. Semifield planes of even order that admit the baer involution. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 2, pp. 26-37. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_2_a2/

[1] O. V. Kravtsova, P. K. Kurshakova, “K voprosu ob izomorfizme polupolevykh ploskostei”, Vestn. KGTU. Mat. metody i modelirovanie, 2006, no. 42, 13–19

[2] V. M. Levchuk, S. V. Panov, P. K. Shtukkert, “Voprosy perechisleniya proektivnykh ploskostei i latinskikh pryamougolnikov”, Mekhanika i modelirovanie, SibGAU, Krasnoyarsk, 2012, 56–70

[3] N. D. Podufalov, B. K. Durakov, O. V. Kravtsova, E. B. Durakov, “O polupolevykh ploskostyakh poryadka $16^2$”, Sib. mat. zhurn., 37:3 (1996), 616–623 | MR | Zbl

[4] M. Biliotti, V. Jha, N. L. Johnson, G. Menichetti, “A structure theory for two-dimensional translation planes of order $q^2$ that admit collineation group of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43 | DOI | MR | Zbl

[5] H. Huang, N. L. Johnson, “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl

[6] D. R. Hughes, F. C. Piper, Projective planes, Springer-Verlag, New York, 1973, 324 pp. | MR | Zbl

[7] O. V. Kravtsova, S. V. Panov, I. V. Shevelyova, “Some results on isomorphisms of finite semifield planes”, Journal of Siberian Federal University. Mathematics, 6:1 (2013), 33–39 | MR

[8] N. D. Podufalov, “On spread sets and collineations of projective planes”, Contem. Math., 131, no. 1, 1992, 697–705 | DOI | MR | Zbl