@article{IIGUM_2013_6_1_a9,
author = {Yu. Yu. Ushakov},
title = {The 2nd {Euler{\textendash}Hall} function on groups of lie type of rank~1},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {101--107},
year = {2013},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a9/}
}
Yu. Yu. Ushakov. The 2nd Euler–Hall function on groups of lie type of rank 1. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a9/
[1] E. Artin, Geometricheskaya algebra, Nauka, M., 1969, 285 pp. | MR | Zbl
[2] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 111 pp. | MR
[3] Kourovskaya tetrad (Nereshennye voprosy teorii grupp), 15-e izd., IM SO RAN, Novosibirsk, 2002 | MR
[4] D. V. Levchuk, “Funktsii F. Kholla na gruppakh lieva tipa ranga 1”, Vladikavkaz. mat. zhurn., 10:1 (2008), 37–39 | MR
[5] D. V. Levchuk, Yu. Yu. Ushakov, “Funktsii Eilera–Kholla na gruppakh Ri”, Sib. mat. zhurn., 56:2 (2013) | MR
[6] N. M. Suchkov, D. M. Prikhodko, “O chisle par porozhdayuschikh grupp $L_2 (2^m )$ i $Sz(2^{2k+1})$”, Sib. mat. zhurn., 42:5 (2001), 1162–1167 | MR | Zbl
[7] Yu. Yu. Ushakov, “Otsenka funktsii F. Kholla na gruppakh lieva tipa ranga 1”, Vladikavkaz. mat. zhurn., 15:2 (2012), 50–56 | MR
[8] D. Bloom, “The subgroups of $PSL_3(\mathrm{q})$ for odd $\mathrm{q}$”, Trans. Amer. Math. Soc., 127:1 (1967), 150–178 | MR | Zbl
[9] R. W. Carter, Simple Groups of Lie Type, John Wiley and Sons, London, 1972 | MR | Zbl
[10] http://www.gap-system.org
[11] Ph. Hall, “The Eulerian functions of a group”, Quart. J. Math., 7 (1936), 134–151 | DOI
[12] R. W. Hartley, “Determination of ternary collineation groups whose coefficients lie in the field $GF(2^n)$”, Annals of Maths. Ser. 2, 27:2 (1925), 140–158 | DOI | MR | Zbl
[13] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12:2 (1911), 207–242 | DOI | MR | Zbl
[14] A. Maroti, M. C. Tamburini, “A solution to a problem of Wiegold”, Comm. in Algebra, 41:1 (2013), 34–49 | DOI | MR | Zbl