Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 89-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A convex linear-quadratic problem is considered in the class of methods of nonlocal improvement. The uniqueness of solutions of phase and conjugate systems for maximization control is justified. The convergence theorems for iterative methods are proved.
Keywords: linear-quadratic problem; special formulas for functional; methods of nonlocal improvement.
@article{IIGUM_2013_6_1_a8,
     author = {V. A. Srochko and E. V. Aksenyushkina},
     title = {Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {89--100},
     year = {2013},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a8/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - E. V. Aksenyushkina
TI  - Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 89
EP  - 100
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a8/
LA  - ru
ID  - IIGUM_2013_6_1_a8
ER  - 
%0 Journal Article
%A V. A. Srochko
%A E. V. Aksenyushkina
%T Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 89-100
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a8/
%G ru
%F IIGUM_2013_6_1_a8
V. A. Srochko; E. V. Aksenyushkina. Linear-quadratic problem of optimal control: justification and convergence of nonlocal methods. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a8/

[1] A. V. Arguchintsev, V. A. Dykhta, V. A. Srochko, “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl

[2] V. A. Baturin, D. E. Urbanovich, Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997, 175 pp. | MR | Zbl

[3] F. P. Vasilev, Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[4] R. Gabasov, F. M. Kirillova, Printsip maksimuma v teorii optimalnogo upravleniya, Librokom, M., 2011, 175 pp.

[5] V. F. Krotov, “Upravlenie kvantovymi sistemami i nekotorye idei optimalnogo upravleniya”, Avtomatika i telemekhanika, 2009, no. 3, 15–23 | MR | Zbl

[6] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.