Global search for optimistic solutions in bilevel problem of optimal tariff choice by telecommunication company
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 57-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hierarchical problem of optimal tariff choice by telecommunication company is considered. Algorithms of local and global search for this problem in optimistic formulation are elaborated. These algorithms are based on the reduction the problem to nonconvex bilinear optimization problems and on the global search theory. The workability of the elaborated algorithms is demonstrated by computational simulation.
Keywords: bilevel telecommunication problem; optimistic solution; reduction to bilinear optimization problems; local search; global search.
@article{IIGUM_2013_6_1_a5,
     author = {A. V. Orlov},
     title = {Global search for optimistic solutions in bilevel problem of optimal tariff choice by telecommunication company},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {57--71},
     year = {2013},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a5/}
}
TY  - JOUR
AU  - A. V. Orlov
TI  - Global search for optimistic solutions in bilevel problem of optimal tariff choice by telecommunication company
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 57
EP  - 71
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a5/
LA  - ru
ID  - IIGUM_2013_6_1_a5
ER  - 
%0 Journal Article
%A A. V. Orlov
%T Global search for optimistic solutions in bilevel problem of optimal tariff choice by telecommunication company
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 57-71
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a5/
%G ru
%F IIGUM_2013_6_1_a5
A. V. Orlov. Global search for optimistic solutions in bilevel problem of optimal tariff choice by telecommunication company. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a5/

[1] M. Bazara, K. Shetti, Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1982, 583 pp. | MR | Zbl

[2] F. P. Vasilev, Metody optimizatsii, Faktorial-press, M., 2002, 824 pp.

[3] Yu. B. Germeier, Igry s neprotivopolozhnymi interesami, Nauka, M., 1976, 328 pp. | MR | Zbl

[4] V. A. Gorelik, A. F. Kononenko, Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh, Radio i svyaz, M., 1982, 144 pp. | MR | Zbl

[5] T. V. Gruzdeva, E. G. Petrova, “Chislennoe reshenie lineinoi dvukhurovnevoi zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 50:10 (2010), 1715–1726 | MR | Zbl

[6] A. S. Strekalovskii, Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.

[7] A. S. Strekalovskii, A. V. Orlov, Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007, 224 pp. | Zbl

[8] A. S. Strekalovskii, A. V. Orlov, A. V. Malyshev, “Lokalnyi poisk v kvadratichno-lineinoi zadache dvukhurovnevogo programmirovaniya”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 75–88

[9] A. S. Strekalovskii, A. V. Orlov, A. V. Malyshev, “Chislennoe reshenie odnogo klassa zadach dvukhurovnevogo programmirovaniya”, Sib. zhurn. vychisl. matematiki, 13:2 (2010), 201–212

[10] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002, 312 pp. | MR | Zbl

[11] A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev, “On computational search for optimistic solutions in bilevel problems”, Journal of Global Optimization, 48:1 (2010), 159–172 | DOI | MR | Zbl

[12] I. Tsevendorj, Optimality conditions in global optimization: contributions to combinatorial optimization, Habilitation to Supervise Research, University of Versailles Saint-Quentin, 2007, 97 pp.

[13] R. J. B. Wets, “On the continuity of the value of a linear program and of related polyhedral-valued multifunctions”, Mathematical Programming Essays in Honor of George B. Dantzig, v. I, Mathematical Programming Studies, 24, 1985, 14–29 | DOI | MR | Zbl