Integrable models of magnetic insulation and their exact radially symmetric solutions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 45-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singular boundary value problem for the model of vacuum diode is studied. Integrability of the system of nonlinear differential equations is justified and a complete system of the first integrals is constructed. A method of solving singular boundary value problem is developed. The generalized model with Laplace's three-dimensional operator is offered. For the generalized model parametrical families of exact solutions are constructed.
Keywords: first integrals, integrability, singular boundary value problem, vacuum diode.
Mots-clés : equations of elliptic type, exact solutions
@article{IIGUM_2013_6_1_a4,
     author = {A. A. Kosov and E. I. Semenov and A. V. Sinitsyn},
     title = {Integrable models of magnetic insulation and their exact radially symmetric solutions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {45--56},
     year = {2013},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
AU  - A. V. Sinitsyn
TI  - Integrable models of magnetic insulation and their exact radially symmetric solutions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 45
EP  - 56
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a4/
LA  - ru
ID  - IIGUM_2013_6_1_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%A A. V. Sinitsyn
%T Integrable models of magnetic insulation and their exact radially symmetric solutions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 45-56
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a4/
%G ru
%F IIGUM_2013_6_1_a4
A. A. Kosov; E. I. Semenov; A. V. Sinitsyn. Integrable models of magnetic insulation and their exact radially symmetric solutions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 45-56. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a4/

[1] N. Ben Abdallah, P. Degond, F. Méhats, “Mathematical models of magnetic insulation”, Physics of plasmas, 5 (1998), 1522–1534 | DOI | MR

[2] A. V. Sinitsyn, “Polozhitelnye resheniya nelineinoi singulyarnoi kraevoi zadachi magnitnoi izolyatsii”, Mat. modelirovanie, 13:5 (2001), 37–52 | MR | Zbl

[3] E. I. Semenov, A. V. Sinitsyn, “Matematicheskaya model magnitnoi izolyatsii vakuumnogo dioda i ee tochnye resheniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 78–91

[4] N. A. Sidorov, D. N. Sidorov, “O razvetvlyayuschikhsya resheniyakh nelineinykh differentsialnykh uravnenii $n$-go poryadka”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 92–103 | Zbl

[5] A. A. Kosov, A. V. Sinitsyn, “O postroenii pervykh integralov dlya odnogo klassa nelineinykh sistem”, Izv. Irkut. gos. un-ta. Ser. Matematika, 5:1 (2012), 57–69 | MR | Zbl

[6] E. T. Uitteker, Analiticheskaya dinamika, Udmurt. un-t, Izhevsk, 1999, 588 pp.