The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 20-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we observe the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation for the perturbed white noise. We show the reduction of the problem under consideration to the Cauchy problem for stochastic Sobolev-type equation. We obtain sufficient conditions for the unique solvability for the abstract problem and for the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation of the perturbed white noise. Our research is based on the mathematical model of Shestakov–Sviridyuk stochastic optimal measurement where under the «White noise» is understood the Nelson–Gliklikh derivative of the Wiener process.
Keywords: linear Sobolev type equations, relative spectrum, Wiener process, additive white noise.
@article{IIGUM_2013_6_1_a2,
     author = {S. A. Zagrebina and E. A. Soldatova},
     title = {The linear {Sobolev-type} {Equations} {With} {Relatively} $p$-bounded {Operators} and {Additive} {White} {Noise}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {20--34},
     year = {2013},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/}
}
TY  - JOUR
AU  - S. A. Zagrebina
AU  - E. A. Soldatova
TI  - The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 20
EP  - 34
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/
LA  - ru
ID  - IIGUM_2013_6_1_a2
ER  - 
%0 Journal Article
%A S. A. Zagrebina
%A E. A. Soldatova
%T The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 20-34
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/
%G ru
%F IIGUM_2013_6_1_a2
S. A. Zagrebina; E. A. Soldatova. The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 20-34. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/

[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Prikl. matematika i mekhanika, 24:5 (1960), 58–73 | MR

[2] S. A. Zagrebina, E. A. Soldatova, “Uravnenie Barenblatta–Zheltova–Kochinoi s belym shumom”, Obozrenie priklad. i prom. matematiki, 19:2 (2012), 252–254

[3] A. A. Zamyshlyaeva, “Stokhasticheskie nepolnye lineinye uravneniya sobolevskogo tipa vysokogo poryadka s additivnym belym shumom”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2012, no. 40 (299), vyp. 14, 73–82

[4] A. A. Zamyshlyaeva, Lineinye uravneniya sobolevskogo tipa vysokogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2012 | Zbl

[5] N. A. Manakova, Zadachi optimalnogo upravleniya dlya uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012 | Zbl

[6] I. V. Melnikova, A. Filinkov, “Abstraktnaya zadacha Koshi v prostranstvakh stokhasticheskikh raspredelenii”, Sovrem. matematika. Fundam. napravleniya, 16, 2006, 96–109 | MR

[7] M. A. Sagadeeva, Dikhotomii reshenii lineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012 | Zbl

[8] G. A. Sviridyuk, “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennym operatorom”, Dokl. Akad. nauk SSSR, 318:4 (1991), 828–831 | MR | Zbl

[9] G. A. Sviridyuk, Issledovanie polulineinykh uravnenii tipa Soboleva v banakhovykh prostranstvakh, dis. ... d-ra fiz.-mat. nauk, Chelyabinsk, 1993 | MR

[10] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4 (1994), 47–74 | MR | Zbl

[11] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 51–72

[12] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. Yuzh.-Ural. gos. un-ta. Ser. Mat. modelirovanie i programmirovanie, 2012, no. 40 (299), vyp. 14, 7–18

[13] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[14] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev-type equations, Walter de Gruyter GmbH Co.KG, Berlin–N. Y., 2011 | MR

[15] P. J. Chen, M. E. Gurtin, “On a theory of heat conduction involving two temperatures ”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl

[16] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N. Y., 2011 | MR | Zbl

[17] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[18] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 2003 | MR | Zbl

[19] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., N. Y., 1999 | MR | Zbl

[20] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72

[21] M. Kovács, S. Larsson, “Introduction to stochastic partial differential equations”, Proceedings of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | Zbl

[22] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[23] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations. II: Solutions In Spaces Of Abstract Stochastic Distributions”, J. of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[24] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | MR | Zbl

[25] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, AMS, Providence, 1997 | MR

[26] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[27] A. L. Shestakov, G. A. Sviridyuk, “On the measurement of the «white noise»”, Bulletin of South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 2012, no. 27 (286), issue 13, 99–108