The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 20-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we observe the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation for the perturbed white noise. We show the reduction of the problem under consideration to the Cauchy problem for stochastic Sobolev-type equation. We obtain sufficient conditions for the unique solvability for the abstract problem and for the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation of the perturbed white noise. Our research is based on the mathematical model of Shestakov–Sviridyuk stochastic optimal measurement where under the «White noise» is understood the Nelson–Gliklikh derivative of the Wiener process.
Keywords: linear Sobolev type equations, relative spectrum, Wiener process, additive white noise.
@article{IIGUM_2013_6_1_a2,
     author = {S. A. Zagrebina and E. A. Soldatova},
     title = {The linear {Sobolev-type} {Equations} {With} {Relatively} $p$-bounded {Operators} and {Additive} {White} {Noise}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/}
}
TY  - JOUR
AU  - S. A. Zagrebina
AU  - E. A. Soldatova
TI  - The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 20
EP  - 34
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/
LA  - ru
ID  - IIGUM_2013_6_1_a2
ER  - 
%0 Journal Article
%A S. A. Zagrebina
%A E. A. Soldatova
%T The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 20-34
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/
%G ru
%F IIGUM_2013_6_1_a2
S. A. Zagrebina; E. A. Soldatova. The linear Sobolev-type Equations With Relatively $p$-bounded Operators and Additive White Noise. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 20-34. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a2/