On the problem of maximizing a modular function in the geometric lattice
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 2-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of maximizing a modular set function on order ideal in the finite geometric lattice is considered. Possibility of generalizing the Rado–Edmonds theorem is studied. A performance guarantee of the greedy algorithm generalizing the known Jenkyns–Korte–Hausmann bound for the problem of maximizing an additive function on independence system is obtained.
Keywords: modular function; geometric lattice; order ideal; $L$-matroid; greedy algorithm; performance guarantee.
@article{IIGUM_2013_6_1_a0,
     author = {V. A. Baransky and M. Yu. Vyplov and V. P. Il'ev},
     title = {On the problem of maximizing a modular function in the geometric lattice},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--13},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/}
}
TY  - JOUR
AU  - V. A. Baransky
AU  - M. Yu. Vyplov
AU  - V. P. Il'ev
TI  - On the problem of maximizing a modular function in the geometric lattice
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2013
SP  - 2
EP  - 13
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/
LA  - ru
ID  - IIGUM_2013_6_1_a0
ER  - 
%0 Journal Article
%A V. A. Baransky
%A M. Yu. Vyplov
%A V. P. Il'ev
%T On the problem of maximizing a modular function in the geometric lattice
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2013
%P 2-13
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/
%G ru
%F IIGUM_2013_6_1_a0
V. A. Baransky; M. Yu. Vyplov; V. P. Il'ev. On the problem of maximizing a modular function in the geometric lattice. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 2-13. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/