On the problem of maximizing a modular function in the geometric lattice
The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 2-13
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of maximizing a modular set function on order ideal in the finite geometric lattice is considered. Possibility of generalizing the Rado–Edmonds theorem is studied. A performance guarantee of the greedy algorithm generalizing the known Jenkyns–Korte–Hausmann bound for the problem of maximizing an additive function on independence system is obtained.
Keywords:
modular function; geometric lattice; order ideal; $L$-matroid; greedy algorithm; performance guarantee.
@article{IIGUM_2013_6_1_a0,
author = {V. A. Baransky and M. Yu. Vyplov and V. P. Il'ev},
title = {On the problem of maximizing a modular function in the geometric lattice},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {2--13},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/}
}
TY - JOUR AU - V. A. Baransky AU - M. Yu. Vyplov AU - V. P. Il'ev TI - On the problem of maximizing a modular function in the geometric lattice JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2013 SP - 2 EP - 13 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/ LA - ru ID - IIGUM_2013_6_1_a0 ER -
%0 Journal Article %A V. A. Baransky %A M. Yu. Vyplov %A V. P. Il'ev %T On the problem of maximizing a modular function in the geometric lattice %J The Bulletin of Irkutsk State University. Series Mathematics %D 2013 %P 2-13 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/ %G ru %F IIGUM_2013_6_1_a0
V. A. Baransky; M. Yu. Vyplov; V. P. Il'ev. On the problem of maximizing a modular function in the geometric lattice. The Bulletin of Irkutsk State University. Series Mathematics, Tome 6 (2013) no. 1, pp. 2-13. http://geodesic.mathdoc.fr/item/IIGUM_2013_6_1_a0/