@article{IIGUM_2012_5_4_a8,
author = {V. N. Ushakov and A. R. Matviychuk and A. V. Ushakov and A. L. Kazakov},
title = {On the solutions construction of the problem of convergence to a fixed point in time},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {95--115},
year = {2012},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/}
}
TY - JOUR AU - V. N. Ushakov AU - A. R. Matviychuk AU - A. V. Ushakov AU - A. L. Kazakov TI - On the solutions construction of the problem of convergence to a fixed point in time JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 95 EP - 115 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/ LA - ru ID - IIGUM_2012_5_4_a8 ER -
%0 Journal Article %A V. N. Ushakov %A A. R. Matviychuk %A A. V. Ushakov %A A. L. Kazakov %T On the solutions construction of the problem of convergence to a fixed point in time %J The Bulletin of Irkutsk State University. Series Mathematics %D 2012 %P 95-115 %V 5 %N 4 %U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/ %G ru %F IIGUM_2012_5_4_a8
V. N. Ushakov; A. R. Matviychuk; A. V. Ushakov; A. L. Kazakov. On the solutions construction of the problem of convergence to a fixed point in time. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 95-115. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/
[1] S. A. Vdovin, A. M. Tarasev, V. N. Ushakov, “Postroenie mnozhestva dostizhimosti integratora Broketta”, Prikl. matematika i mekhanika, 68:5 (2004), 707–724 | MR | Zbl
[2] M. I. Gusev, “Otsenki mnozhestva dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94
[3] Kh. G. Guseinov, A. N. Moiseev, V. N. Ushakov, “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | MR
[4] A. L. Kazakov, A. A. Lempert, “Ob odnom podkhode k resheniyu zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Avtomatika i telemekhanika, 2011, no. 7, 50–57 | MR | Zbl
[5] N. N. Krasovskii, Osnovnaya igrovaya zadacha navedeniya. Pogloschenie tseli. Ekstremalnaya strategiya, Lektsii po teorii upravleniya, 4, Ural. gos. un-t, Sverdlovsk, 1970, 96 pp.
[6] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR
[7] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 456 pp. | MR
[8] E. K. Kostousova, “Ob ogranichennosti i neogranichennosti vneshnikh poliedalnykh otsenok mnozhestv dostizhimosti lineinykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 134–145
[9] M. S. Nikolskii, “Ob approksimatsii mnozhestva dostizhimosti differentsialnogo vklyucheniya”, Vestn. MGU. Ser. 15, Vychisl. matematika i kibernetika, 1987, no. 4, 31–34 | MR
[10] M. S. Nikolskii, “Ob otsenke iznutri mnozhestva dostizhimosti nelineinogo integratora R. Broketta”, Differents. uravneniya, 96:11 (2000), 1501–1505 | MR
[11] L. S. Pontryagin, “O lineinykh dif. igrakh, I”, Dokl. AN SSSR, 156:4 (1964), 738–741 | Zbl
[12] V. N. Ushakov, A. R. Matviichuk, A. V. Ushakov, “Approksimatsiya mnozhestv dostizhimosti i integralnykh voronok”, Vestn. Udmurt. un-ta. Matematika, 2011, no. 4, 23–39 | MR
[13] V. N. Ushakov, A. P. Khripunov, “Postroenie integralnykh voronok differentsialnykh vklyuchenii”, ZhVM i P.F., 34:7 (1994), 965–977 | MR | Zbl
[14] T. F. Filippova, “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta atematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232
[15] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988 | MR
[16] A. Astolfi, A. Rapaport, “Robust stabilization of the angular velocity of a rapid body”, Systems and control letters, 34 (1998), 257–264 | DOI | MR | Zbl
[17] R. W. Brokett, “Asymptotic stability and feedback stabilization”, Differential Geometric Control Theory, eds. Brokett R. W. et al., Birkhauser, Boston, 1983, 181–191 | MR
[18] A. B. Kurzhanski, I. Valyi, Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR
[19] A. A. Kurzhanski, P. Varaiya, Ellipsoidal toolbox, , 2005 http://code.google.com/p/ellipsoids