On the solutions construction of the problem of convergence to a fixed point in time
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 95-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One game pursuit problem with compact target set at the finite time moment is studied. The enquiry of its solution construction is researched.
Keywords: controlled system, game pursuit problem, reachable set, integral fusion.
@article{IIGUM_2012_5_4_a8,
     author = {V. N. Ushakov and A. R. Matviychuk and A. V. Ushakov and A. L. Kazakov},
     title = {On the solutions construction of the problem of convergence to a fixed point in time},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {95--115},
     year = {2012},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. R. Matviychuk
AU  - A. V. Ushakov
AU  - A. L. Kazakov
TI  - On the solutions construction of the problem of convergence to a fixed point in time
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 95
EP  - 115
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/
LA  - ru
ID  - IIGUM_2012_5_4_a8
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. R. Matviychuk
%A A. V. Ushakov
%A A. L. Kazakov
%T On the solutions construction of the problem of convergence to a fixed point in time
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 95-115
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/
%G ru
%F IIGUM_2012_5_4_a8
V. N. Ushakov; A. R. Matviychuk; A. V. Ushakov; A. L. Kazakov. On the solutions construction of the problem of convergence to a fixed point in time. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 95-115. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a8/

[1] S. A. Vdovin, A. M. Tarasev, V. N. Ushakov, “Postroenie mnozhestva dostizhimosti integratora Broketta”, Prikl. matematika i mekhanika, 68:5 (2004), 707–724 | MR | Zbl

[2] M. I. Gusev, “Otsenki mnozhestva dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94

[3] Kh. G. Guseinov, A. N. Moiseev, V. N. Ushakov, “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | MR

[4] A. L. Kazakov, A. A. Lempert, “Ob odnom podkhode k resheniyu zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Avtomatika i telemekhanika, 2011, no. 7, 50–57 | MR | Zbl

[5] N. N. Krasovskii, Osnovnaya igrovaya zadacha navedeniya. Pogloschenie tseli. Ekstremalnaya strategiya, Lektsii po teorii upravleniya, 4, Ural. gos. un-t, Sverdlovsk, 1970, 96 pp.

[6] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[7] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Fizmatlit, M., 1974, 456 pp. | MR

[8] E. K. Kostousova, “Ob ogranichennosti i neogranichennosti vneshnikh poliedalnykh otsenok mnozhestv dostizhimosti lineinykh differentsialnykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 134–145

[9] M. S. Nikolskii, “Ob approksimatsii mnozhestva dostizhimosti differentsialnogo vklyucheniya”, Vestn. MGU. Ser. 15, Vychisl. matematika i kibernetika, 1987, no. 4, 31–34 | MR

[10] M. S. Nikolskii, “Ob otsenke iznutri mnozhestva dostizhimosti nelineinogo integratora R. Broketta”, Differents. uravneniya, 96:11 (2000), 1501–1505 | MR

[11] L. S. Pontryagin, “O lineinykh dif. igrakh, I”, Dokl. AN SSSR, 156:4 (1964), 738–741 | Zbl

[12] V. N. Ushakov, A. R. Matviichuk, A. V. Ushakov, “Approksimatsiya mnozhestv dostizhimosti i integralnykh voronok”, Vestn. Udmurt. un-ta. Matematika, 2011, no. 4, 23–39 | MR

[13] V. N. Ushakov, A. P. Khripunov, “Postroenie integralnykh voronok differentsialnykh vklyuchenii”, ZhVM i P.F., 34:7 (1994), 965–977 | MR | Zbl

[14] T. F. Filippova, “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta atematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 223–232

[15] F. L. Chernousko, Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988 | MR

[16] A. Astolfi, A. Rapaport, “Robust stabilization of the angular velocity of a rapid body”, Systems and control letters, 34 (1998), 257–264 | DOI | MR | Zbl

[17] R. W. Brokett, “Asymptotic stability and feedback stabilization”, Differential Geometric Control Theory, eds. Brokett R. W. et al., Birkhauser, Boston, 1983, 181–191 | MR

[18] A. B. Kurzhanski, I. Valyi, Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR

[19] A. A. Kurzhanski, P. Varaiya, Ellipsoidal toolbox, , 2005 http://code.google.com/p/ellipsoids