On nonaxiomatizability of critical lattices class
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 66-78
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rigid lattices, i.e., lattices, any its endomorphism is a constant endomorphism (mapping all elements to a some single element) or the identity endomorphism, are investigated. It is proved that the class of critical lattices is not axiomatizable.
Keywords: lattice, rigid lattice, critical lattice, axiomatizability.
Mots-clés : endomorphism
@article{IIGUM_2012_5_4_a6,
     author = {O. E. Perminova},
     title = {On nonaxiomatizability of critical lattices class},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {66--78},
     year = {2012},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/}
}
TY  - JOUR
AU  - O. E. Perminova
TI  - On nonaxiomatizability of critical lattices class
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 66
EP  - 78
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/
LA  - ru
ID  - IIGUM_2012_5_4_a6
ER  - 
%0 Journal Article
%A O. E. Perminova
%T On nonaxiomatizability of critical lattices class
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 66-78
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/
%G ru
%F IIGUM_2012_5_4_a6
O. E. Perminova. On nonaxiomatizability of critical lattices class. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 66-78. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/

[1] Yu. M. Vazhenin, E. A. Perminov, “O zhestkikh reshetkakh i grafakh”, Issled. po sovrem. algebre, Ural. gos. un-t, Sverdlovsk, 1979, 3–21 | MR

[2] O. E. Perminova, “O konechnykh kriticheskikh reshetkakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 185–193 | MR

[3] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR

[4] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1981, 456 pp. | MR

[5] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973, 193 pp. | Zbl