On nonaxiomatizability of critical lattices class
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 66-78
Rigid lattices, i.e., lattices, any its endomorphism is a constant endomorphism (mapping all elements to a some single element) or the identity endomorphism, are investigated. It is proved that the class of critical lattices is not axiomatizable.
Keywords:
lattice, rigid lattice, critical lattice, axiomatizability.
Mots-clés : endomorphism
Mots-clés : endomorphism
@article{IIGUM_2012_5_4_a6,
author = {O. E. Perminova},
title = {On nonaxiomatizability of critical lattices class},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {66--78},
year = {2012},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/}
}
O. E. Perminova. On nonaxiomatizability of critical lattices class. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 66-78. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a6/
[1] Yu. M. Vazhenin, E. A. Perminov, “O zhestkikh reshetkakh i grafakh”, Issled. po sovrem. algebre, Ural. gos. un-t, Sverdlovsk, 1979, 3–21 | MR
[2] O. E. Perminova, “O konechnykh kriticheskikh reshetkakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 185–193 | MR
[3] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR
[4] G. Grettser, Obschaya teoriya reshetok, Mir, M., 1981, 456 pp. | MR
[5] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973, 193 pp. | Zbl