Object Theories over List Superstructures
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 27-44

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the potential of semantic programming methods based on the theory of hereditarily finite list superstructures (GES) for the logical simulation of the object-oriented approach is considered and estimated. Based on GES, we develop a formal system, which is analogous to the description logic $\mathcal{OODL}$, but in contrast with $\mathcal{OODL}$, it allows the natural simulation of ordered data structures (e.g. lists and arrays). The formal system, which is introduced and investigated in this paper, can help for the development of the logical semantics of programming languages, in particular, the object-oriented programming language Libretto.
Keywords: description logic, object theory, object-oriented programming, semantic programming
Mots-clés : datatype, Libretto.
@article{IIGUM_2012_5_4_a3,
     author = {A. A. Malykh and A. V. Mantsivoda},
     title = {Object {Theories} over {List} {Superstructures}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {27--44},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a3/}
}
TY  - JOUR
AU  - A. A. Malykh
AU  - A. V. Mantsivoda
TI  - Object Theories over List Superstructures
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 27
EP  - 44
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a3/
LA  - ru
ID  - IIGUM_2012_5_4_a3
ER  - 
%0 Journal Article
%A A. A. Malykh
%A A. V. Mantsivoda
%T Object Theories over List Superstructures
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 27-44
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a3/
%G ru
%F IIGUM_2012_5_4_a3
A. A. Malykh; A. V. Mantsivoda. Object Theories over List Superstructures. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 27-44. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a3/