@article{IIGUM_2012_5_4_a1,
author = {G. P. Egorychev},
title = {New polynomial identities for determinants over commutative rings},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {16--20},
year = {2012},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/}
}
G. P. Egorychev. New polynomial identities for determinants over commutative rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/
[1] V. Arvind, S. Srinivasan, On the hardness of noncommutative determinant, Electronic Colloquium on Computational Complexity, Report No 103, 2009, 18 pp.
[2] A. Barvinok, New permanent estimators via non-commutative determinants, 2000, 13 pp., arXiv: math/0007153
[3] H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publ., N.Y., 1995 | MR
[4] Springer, 2012 | MR
[5] G. P. Egorychev, “Explicit formula for determinants its corollaries”, Tez. Mezhdunar. konf. po algebre i geometrii, posvyasch. 90-letiyu so dnya rozhdeniya A. I. Shirshova, IMM SO RAN, Novosibirsk, 2011, 28–29
[6] G. P. Egorychev, “The new polynomial identities for determinants and their corollaries”, Algebra i geometriya, Tr. VII Mezhdunar. konf. po algebre i geometrii, posvyasch. 80-letiyu so dnya rozhd. A. I. Starostina, IMM URO RAN, Ekaterinburg, 2011, 173–175
[7] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funktsionalnyi analiz i ego prilozheniya, 25:2 (1991), 13–25 | MR
[8] T. A. Muir, Treatise on the theory of determinants, Dover, N.Y., 1960