New polynomial identities for determinants over commutative rings
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K$ be a commutative ring with division by integers. Here we give a new family of polynomial identities (calculation formulas) for determinants over the ring $K$ using the well-known polarization theorem, which allows us a new criterian for linear independence of $n$ vectors in $\mathbb{C}^{n}$.
Keywords: determinants; commutative rings; polynomial identities.
@article{IIGUM_2012_5_4_a1,
     author = {G. P. Egorychev},
     title = {New polynomial identities for determinants over commutative rings},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {16--20},
     year = {2012},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/}
}
TY  - JOUR
AU  - G. P. Egorychev
TI  - New polynomial identities for determinants over commutative rings
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 16
EP  - 20
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/
LA  - ru
ID  - IIGUM_2012_5_4_a1
ER  - 
%0 Journal Article
%A G. P. Egorychev
%T New polynomial identities for determinants over commutative rings
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 16-20
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/
%G ru
%F IIGUM_2012_5_4_a1
G. P. Egorychev. New polynomial identities for determinants over commutative rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/

[1] V. Arvind, S. Srinivasan, On the hardness of noncommutative determinant, Electronic Colloquium on Computational Complexity, Report No 103, 2009, 18 pp.

[2] A. Barvinok, New permanent estimators via non-commutative determinants, 2000, 13 pp., arXiv: math/0007153

[3] H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publ., N.Y., 1995 | MR

[4] Springer, 2012 | MR

[5] G. P. Egorychev, “Explicit formula for determinants its corollaries”, Tez. Mezhdunar. konf. po algebre i geometrii, posvyasch. 90-letiyu so dnya rozhdeniya A. I. Shirshova, IMM SO RAN, Novosibirsk, 2011, 28–29

[6] G. P. Egorychev, “The new polynomial identities for determinants and their corollaries”, Algebra i geometriya, Tr. VII Mezhdunar. konf. po algebre i geometrii, posvyasch. 80-letiyu so dnya rozhd. A. I. Starostina, IMM URO RAN, Ekaterinburg, 2011, 173–175

[7] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funktsionalnyi analiz i ego prilozheniya, 25:2 (1991), 13–25 | MR

[8] T. A. Muir, Treatise on the theory of determinants, Dover, N.Y., 1960