New polynomial identities for determinants over commutative rings
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a commutative ring with division by integers. Here we give a new family of polynomial identities (calculation formulas) for determinants over the ring $K$ using the well-known polarization theorem, which allows us a new criterian for linear independence of $n$ vectors in $\mathbb{C}^{n}$.
Keywords:
determinants; commutative rings; polynomial identities.
@article{IIGUM_2012_5_4_a1,
author = {G. P. Egorychev},
title = {New polynomial identities for determinants over commutative rings},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {16--20},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/}
}
TY - JOUR AU - G. P. Egorychev TI - New polynomial identities for determinants over commutative rings JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 16 EP - 20 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/ LA - ru ID - IIGUM_2012_5_4_a1 ER -
G. P. Egorychev. New polynomial identities for determinants over commutative rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/