New polynomial identities for determinants over commutative rings
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a commutative ring with division by integers. Here we give a new family of polynomial identities (calculation formulas) for determinants over the ring $K$ using the well-known polarization theorem, which allows us a new criterian for linear independence of $n$ vectors in $\mathbb{C}^{n}$.
Keywords: determinants; commutative rings; polynomial identities.
@article{IIGUM_2012_5_4_a1,
     author = {G. P. Egorychev},
     title = {New polynomial identities for determinants over commutative rings},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {16--20},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/}
}
TY  - JOUR
AU  - G. P. Egorychev
TI  - New polynomial identities for determinants over commutative rings
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 16
EP  - 20
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/
LA  - ru
ID  - IIGUM_2012_5_4_a1
ER  - 
%0 Journal Article
%A G. P. Egorychev
%T New polynomial identities for determinants over commutative rings
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 16-20
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/
%G ru
%F IIGUM_2012_5_4_a1
G. P. Egorychev. New polynomial identities for determinants over commutative rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 16-20. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a1/