On an approach to the robustness in the case of the $p$-median problem
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 2-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study an approach to the robustness of discrete facility location problems by the example of the $p$-median problem. For that purpose a bicriteria facility location problem of $p$ points of service in order to minimize the total cost of satisfying the demands of all clients and to maximize the robustness of obtained solutions is considered. An algorithm of finding an approximation of the weak Pareto solution set based on the $\varepsilon$-constraint method has been proposed.
Keywords: discrete facility location, robustness, bi-objective combinatorial optimization, $p$-median problem, $\varepsilon$-constraint method.
@article{IIGUM_2012_5_4_a0,
     author = {I. L. Vasilyev and A. V. Ushakov},
     title = {On an approach to the robustness in the case of the $p$-median problem},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {2--15},
     year = {2012},
     volume = {5},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/}
}
TY  - JOUR
AU  - I. L. Vasilyev
AU  - A. V. Ushakov
TI  - On an approach to the robustness in the case of the $p$-median problem
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 2
EP  - 15
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/
LA  - ru
ID  - IIGUM_2012_5_4_a0
ER  - 
%0 Journal Article
%A I. L. Vasilyev
%A A. V. Ushakov
%T On an approach to the robustness in the case of the $p$-median problem
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 2-15
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/
%G ru
%F IIGUM_2012_5_4_a0
I. L. Vasilyev; A. V. Ushakov. On an approach to the robustness in the case of the $p$-median problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 2-15. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/

[1] J. F. Bérubé, M. Gendreau, J. Y. Potvin, “An exact $\varepsilon$-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits”, EJOR, 194:1 (2009), 39–50 | DOI | MR | Zbl

[2] R. Blanquero, E. Carrizosa, E. M. T. Hendrix, “Locating a competitive facility in the plane with a robustness criterion”, EJOR, 215:1 (2011), 21–24 | DOI | MR | Zbl

[3] E. Carrizosa, S. Nickel, “Robust facility location”, Math. Methods Oper. Res., 58:2 (2003), 331–349 | DOI | MR | Zbl

[4] M. Ehrgott, D. M. Ryan, “Bicriteria robustness versus cost optimisation in tour of duty planning at Air New Zealand”, Proceedings of the 35th Annual Conference of the Operational Research Society of New Zealand, 2000, 31–39

[5] M. Ehrgott, X. Gandibleux (eds.), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, International Series in Operations Research Management Science, Kluwer Academic Publishers, Dordrecht, 2003, 520 pp. | DOI | MR

[6] S. L. Hakimi, “Optimum distribution of switching centers in a communication network and some related graph theoretic problems”, Operations Research, 13:3 (1965), 462–475 | DOI | MR | Zbl

[7] G. Mavrotas, “Effective implementation of the $\varepsilon$-constraint method in Multi-Objective Mathematical Programming problems”, Applied Mathematics and Computation, 213:2 (2009), 455–465 | DOI | MR | Zbl

[8] I. I. Melamed, I. K. Sigal, “A computational investigation of linear parametrization of criteria in multicriteria discrete programming”, Computational Mathematics and Mathematical Physics, 36:10 (1996), 1341–1343 | MR | Zbl

[9] I. I. Melamed, I. K. Sigal, “The linear convolution of criteria in the bicriteria traveling salesman problem”, Computational Mathematics and Mathematical Physics, 37:8 (1997), 902–905 | MR | Zbl

[10] I. I. Melamed, I. K. Sigal, “Numerical analysis of tricriteria tree and assignment problems”, Computational Mathematics and Mathematical Physics, 38:10 (1998), 1704–1707 | MR

[11] I. I. Melamed, I. K. Sigal, “Combinatorial optimization problems with two and three criteria”, Doklady Mathematics, 59:3 (1999), 490–493 | MR | Zbl

[12] N. Mladenović, J. Brimberg, P. Hansen, J. A. Moreno-Pérez, “The $p$-median problem: A survey of metaheuristic approaches”, EJOR, 179:3 (2007), 927–939 | DOI | MR | Zbl

[13] J. Reese, “Solution Methods for the $p$-Median Problem: An Annotated Bibliography”, Networks, 28:3 (2006), 125–142 | DOI | MR