@article{IIGUM_2012_5_4_a0,
author = {I. L. Vasilyev and A. V. Ushakov},
title = {On an approach to the robustness in the case of the $p$-median problem},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {2--15},
year = {2012},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/}
}
TY - JOUR AU - I. L. Vasilyev AU - A. V. Ushakov TI - On an approach to the robustness in the case of the $p$-median problem JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 2 EP - 15 VL - 5 IS - 4 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/ LA - ru ID - IIGUM_2012_5_4_a0 ER -
I. L. Vasilyev; A. V. Ushakov. On an approach to the robustness in the case of the $p$-median problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 4, pp. 2-15. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_4_a0/
[1] J. F. Bérubé, M. Gendreau, J. Y. Potvin, “An exact $\varepsilon$-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits”, EJOR, 194:1 (2009), 39–50 | DOI | MR | Zbl
[2] R. Blanquero, E. Carrizosa, E. M. T. Hendrix, “Locating a competitive facility in the plane with a robustness criterion”, EJOR, 215:1 (2011), 21–24 | DOI | MR | Zbl
[3] E. Carrizosa, S. Nickel, “Robust facility location”, Math. Methods Oper. Res., 58:2 (2003), 331–349 | DOI | MR | Zbl
[4] M. Ehrgott, D. M. Ryan, “Bicriteria robustness versus cost optimisation in tour of duty planning at Air New Zealand”, Proceedings of the 35th Annual Conference of the Operational Research Society of New Zealand, 2000, 31–39
[5] M. Ehrgott, X. Gandibleux (eds.), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, International Series in Operations Research Management Science, Kluwer Academic Publishers, Dordrecht, 2003, 520 pp. | DOI | MR
[6] S. L. Hakimi, “Optimum distribution of switching centers in a communication network and some related graph theoretic problems”, Operations Research, 13:3 (1965), 462–475 | DOI | MR | Zbl
[7] G. Mavrotas, “Effective implementation of the $\varepsilon$-constraint method in Multi-Objective Mathematical Programming problems”, Applied Mathematics and Computation, 213:2 (2009), 455–465 | DOI | MR | Zbl
[8] I. I. Melamed, I. K. Sigal, “A computational investigation of linear parametrization of criteria in multicriteria discrete programming”, Computational Mathematics and Mathematical Physics, 36:10 (1996), 1341–1343 | MR | Zbl
[9] I. I. Melamed, I. K. Sigal, “The linear convolution of criteria in the bicriteria traveling salesman problem”, Computational Mathematics and Mathematical Physics, 37:8 (1997), 902–905 | MR | Zbl
[10] I. I. Melamed, I. K. Sigal, “Numerical analysis of tricriteria tree and assignment problems”, Computational Mathematics and Mathematical Physics, 38:10 (1998), 1704–1707 | MR
[11] I. I. Melamed, I. K. Sigal, “Combinatorial optimization problems with two and three criteria”, Doklady Mathematics, 59:3 (1999), 490–493 | MR | Zbl
[12] N. Mladenović, J. Brimberg, P. Hansen, J. A. Moreno-Pérez, “The $p$-median problem: A survey of metaheuristic approaches”, EJOR, 179:3 (2007), 927–939 | DOI | MR | Zbl
[13] J. Reese, “Solution Methods for the $p$-Median Problem: An Annotated Bibliography”, Networks, 28:3 (2006), 125–142 | DOI | MR