@article{IIGUM_2012_5_3_a8,
author = {G. A. Rudykh and D. J. Kiselevich},
title = {On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {104--111},
year = {2012},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/}
}
TY - JOUR AU - G. A. Rudykh AU - D. J. Kiselevich TI - On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 104 EP - 111 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/ LA - ru ID - IIGUM_2012_5_3_a8 ER -
%0 Journal Article %A G. A. Rudykh %A D. J. Kiselevich %T On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations %J The Bulletin of Irkutsk State University. Series Mathematics %D 2012 %P 104-111 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/ %G ru %F IIGUM_2012_5_3_a8
G. A. Rudykh; D. J. Kiselevich. On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 104-111. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/
[1] V. I. Zubov, Dinamika upravlyaemykh sistem, Vyssh. shk., M., 1982, 285 pp. | MR
[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR
[3] G. A. Leonov, Strannye attraktory i klassicheskaya teoriya ustoichivosti dvizheniya, Izd-vo S.-Peterbur. un-ta, SPb., 2004, 144 pp.
[4] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949, 550 pp.
[5] D. A. Ovsyannikov, Matematicheskie metody upravleniya puchkami, Izd-vo LGU, L., 1980, 226 pp. | MR
[6] G. A. Rudykh, D. Ya. Kiselevich, “Uravnenie Liuvillya v issledovanii ustoichivosti nelineinykh sistem obyknovennykh differentsialnykh uravnenii”, Mat. zametki YaGU, 18:1 (2011), 141–155 | MR
[7] W. H. Steeb, “Generalized Liouville equation, entropy, and dynamic systems containing limit cycles”, Physica, 95A:1 (1979), 181–190 | DOI | MR
[8] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2002