On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 104-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the behavior of the integral curve nonautonomous system of ordinary differential equations. It is shown that under certain assumptions, the motion along trajectories of the system of ordinary differential equations made the most of the probability density function distribution.
Keywords: system of ordinary differential equations Liouville equation, probability density function, the integral curve, the maximum movement.
@article{IIGUM_2012_5_3_a8,
     author = {G. A. Rudykh and D. J. Kiselevich},
     title = {On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {104--111},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/}
}
TY  - JOUR
AU  - G. A. Rudykh
AU  - D. J. Kiselevich
TI  - On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 104
EP  - 111
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/
LA  - ru
ID  - IIGUM_2012_5_3_a8
ER  - 
%0 Journal Article
%A G. A. Rudykh
%A D. J. Kiselevich
%T On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 104-111
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/
%G ru
%F IIGUM_2012_5_3_a8
G. A. Rudykh; D. J. Kiselevich. On the most probable (typical) trajectory of the nonautonomous system of ordinary differential equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 104-111. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a8/

[1] V. I. Zubov, Dinamika upravlyaemykh sistem, Vyssh. shk., M., 1982, 285 pp. | MR

[2] M. A. Krasnoselskii, Operator sdviga po traektoriyam obyknovennykh differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR

[3] G. A. Leonov, Strannye attraktory i klassicheskaya teoriya ustoichivosti dvizheniya, Izd-vo S.-Peterbur. un-ta, SPb., 2004, 144 pp.

[4] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1949, 550 pp.

[5] D. A. Ovsyannikov, Matematicheskie metody upravleniya puchkami, Izd-vo LGU, L., 1980, 226 pp. | MR

[6] G. A. Rudykh, D. Ya. Kiselevich, “Uravnenie Liuvillya v issledovanii ustoichivosti nelineinykh sistem obyknovennykh differentsialnykh uravnenii”, Mat. zametki YaGU, 18:1 (2011), 141–155 | MR

[7] W. H. Steeb, “Generalized Liouville equation, entropy, and dynamic systems containing limit cycles”, Physica, 95A:1 (1979), 181–190 | DOI | MR

[8] V. A. Trenogin, Funktsionalnyi analiz, Fizmatlit, M., 2002