@article{IIGUM_2012_5_3_a7,
author = {A. G. Pinus},
title = {The point-termal complete clones of functions and the lattices of lattices of all subalgebras of algebras with fixed basic set},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {94--103},
year = {2012},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a7/}
}
TY - JOUR AU - A. G. Pinus TI - The point-termal complete clones of functions and the lattices of lattices of all subalgebras of algebras with fixed basic set JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 94 EP - 103 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a7/ LA - ru ID - IIGUM_2012_5_3_a7 ER -
%0 Journal Article %A A. G. Pinus %T The point-termal complete clones of functions and the lattices of lattices of all subalgebras of algebras with fixed basic set %J The Bulletin of Irkutsk State University. Series Mathematics %D 2012 %P 94-103 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a7/ %G ru %F IIGUM_2012_5_3_a7
A. G. Pinus. The point-termal complete clones of functions and the lattices of lattices of all subalgebras of algebras with fixed basic set. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 94-103. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a7/
[1] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980 | MR
[2] A. G. Pinus, Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002
[3] A. G. Pinus, “Uslovnye termy i ikh prilozheniya v algebre i teorii vychislenii”, Uspekhi mat. nauk, 56:4 (2001), 35–72 | DOI | MR | Zbl
[4] A. G. Pinus, Proizvodnye struktury universalnykh algebr, Izd-vo NGTU, Novosibirsk, 2007 | Zbl
[5] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Nauka, M., 1979 | MR
[6] Yu. I. Yanov, A. A. Muchnik, “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, DAN SSSR, 127:1 (1959), 44–46 | Zbl
[7] G. Birkhoff, O. Frink, “Representations of lattices by sets”, Trans. Amer. Math. Soc., 64 (1948), 299–316 | DOI | MR | Zbl
[8] E. L. Post, Two-valued iterative systems of mathematical logic, Ann. of Math. Studies, 5, Princeton Univ. Press, 1941 | MR | Zbl
[9] P. Pudlak, J. Tuma, “Every finite lattice can be embedded into a finite partition lattice”, Alg. univ., 10:1 (1980), 74–95 | DOI | MR | Zbl
[10] P. M. Whitman, “Lattices, equivalence relations and subgroups”, Bulletin of AMS, 52 (1946), 507–522 | DOI | MR | Zbl