The solvability of Volterra integro-differential equations with Fredholm operator in main part
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 73-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial value problem unique solvability in the classes of distributions and functions of finite smoothness is studied in this paper by the methods of the theory of fundamental operator-functions of integro-differential operators in Banach spaces.
Keywords: Banach space, Fredholm operator, fundamental operator-function.
Mots-clés : Jordan set, distribution
@article{IIGUM_2012_5_3_a6,
     author = {S. S. Orlov},
     title = {The solvability of {Volterra} integro-differential equations with {Fredholm} operator in main part},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {73--93},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a6/}
}
TY  - JOUR
AU  - S. S. Orlov
TI  - The solvability of Volterra integro-differential equations with Fredholm operator in main part
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 73
EP  - 93
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a6/
LA  - ru
ID  - IIGUM_2012_5_3_a6
ER  - 
%0 Journal Article
%A S. S. Orlov
%T The solvability of Volterra integro-differential equations with Fredholm operator in main part
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 73-93
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a6/
%G ru
%F IIGUM_2012_5_3_a6
S. S. Orlov. The solvability of Volterra integro-differential equations with Fredholm operator in main part. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 73-93. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a6/

[1] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969, 527 pp. | MR

[2] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp. | MR

[3] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii vyazkouprugosti, Nauka, M., 1970, 280 pp. | MR

[4] B. V. Loginov, Yu. B. Rusak, “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii v chastnykh proizvodnykh i ikh prilozheniya, FAN, Tashkent, 1978, 133–148 | MR

[5] S. S. Orlov, “Vyrozhdennoe integro-differentsialnoe uravnenie v banakhovykh prostranstvakh i ego prilozheniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 54–60 | Zbl

[6] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizhenii zhidkostei Kelvina–Foigta i Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[7] N. A. Sidorov, “Ob odnom klasse uravnenii Volterra s vyrozhdeniem v banakhovykh prostranstvakh”, Sib. mat. zhurn., 21:2 (1983), 202–203

[8] N. A. Sidorov, D. N. Sidorov, “Posledovatelnye priblizheniya reshenii vyrozhdennoi zadachi Koshi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 2, 2012, 238–244

[9] N. A. Sidorov, D. N. Sidorov, A. V. Krasnik, “O reshenii operatorno-integralnykh uravnenii Volterra v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differentsialnye uravneniya, 46:6 (2010), 874–878 | MR

[10] M. V. Falaleev, “O prilozheniyakh teorii fundamentalnykh operator-funktsii vyrozhdennykh integro-differentsialnykh operatorov v banakhovykh prostranstvakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo IM im. S. L. Soboleva SO RAN, Novosibirsk, 283–297

[11] M. V. Falaleev, S. S. Orlov, “Vyrozhdennye integro-differentsialnye uravneniya spetsialnogo vida v banakhovykh prostranstvakh i ikh prilozheniya”, Vestn. YuUrGU. Matematicheskoe modelirovanie i programmirovanie, 2011, no. 4, Vyp. 7, 100–110 | Zbl

[12] M. V. Falaleev, S. S. Orlov, “Nachalno-kraevye zadachi dlya integro-differentsialnykh uravnenii vyazkouprugosti”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:4 (2010), 597–600 | MR

[13] M. V. Falaleev, “Integro-differentsialnye uravneniya s fredgolmovym operatorom pri starshei proizvodnoi v banakhovykh prostranstvakh i ikh prilozheniya”, Izv. Irkut. gos. un-ta. Ser. Matematika, 5:2 (2012), 90–102 | Zbl

[14] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | MR | Zbl

[15] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Acad. Publ., Dordrecht, 2002, 548 pp. | MR | Zbl