Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 63-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper numerical methods based on the necessary optimality condition in form of variational maximum principle for solving the problem of optimal control of nonlinear wave equation with nonlinear boundary conditions are presented.
Keywords: numerical methods, optimal control, wave equation, variational maximum principle.
@article{IIGUM_2012_5_3_a5,
     author = {E. A. Lutkovskaya},
     title = {Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {63--72},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/}
}
TY  - JOUR
AU  - E. A. Lutkovskaya
TI  - Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 63
EP  - 72
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/
LA  - ru
ID  - IIGUM_2012_5_3_a5
ER  - 
%0 Journal Article
%A E. A. Lutkovskaya
%T Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 63-72
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/
%G ru
%F IIGUM_2012_5_3_a5
E. A. Lutkovskaya. Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 63-72. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/

[1] O. V. Vasilev, V. A. Srochko, V. A. Terletskii, Metody optimizatsii i ikh prilozheniya, v. 2, Optimalnoe upravlenie, Nauka, Novosibirsk, 1990, 151 pp. | MR

[2] V. A. Terletskii, E. A. Lutkovskaya, “Variatsionnyi printsip maksimuma v zadache optimalnogo upravleniya nelineinymi volnovymi protsessami”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:3 (2010), 105–117 | MR | Zbl

[3] V. A. Terletskii, “K obosnovaniyu skhodimosti odnoi modifikatsii metoda posledovatelnykh priblizhenii, osnovannogo na printsipe maksimuma”, Metody optimizatsii i ikh prilozheniya, Irkutsk, 1983, 58–69 | MR

[4] D. Q. Mayne, E. Polak, “First Order, Strong Variations Algorithms for Optimal Control”, J. of Optimization Theory and Applications, 16:3–4 (1975), 277–301 | DOI | MR | Zbl