@article{IIGUM_2012_5_3_a5,
author = {E. A. Lutkovskaya},
title = {Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {63--72},
year = {2012},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/}
}
TY - JOUR AU - E. A. Lutkovskaya TI - Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2012 SP - 63 EP - 72 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/ LA - ru ID - IIGUM_2012_5_3_a5 ER -
%0 Journal Article %A E. A. Lutkovskaya %T Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes %J The Bulletin of Irkutsk State University. Series Mathematics %D 2012 %P 63-72 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/ %G ru %F IIGUM_2012_5_3_a5
E. A. Lutkovskaya. Numerical methods based on variational maximum principle for solving the problem of optimal control of nonlinear wave processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 63-72. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a5/
[1] O. V. Vasilev, V. A. Srochko, V. A. Terletskii, Metody optimizatsii i ikh prilozheniya, v. 2, Optimalnoe upravlenie, Nauka, Novosibirsk, 1990, 151 pp. | MR
[2] V. A. Terletskii, E. A. Lutkovskaya, “Variatsionnyi printsip maksimuma v zadache optimalnogo upravleniya nelineinymi volnovymi protsessami”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:3 (2010), 105–117 | MR | Zbl
[3] V. A. Terletskii, “K obosnovaniyu skhodimosti odnoi modifikatsii metoda posledovatelnykh priblizhenii, osnovannogo na printsipe maksimuma”, Metody optimizatsii i ikh prilozheniya, Irkutsk, 1983, 58–69 | MR
[4] D. Q. Mayne, E. Polak, “First Order, Strong Variations Algorithms for Optimal Control”, J. of Optimization Theory and Applications, 16:3–4 (1975), 277–301 | DOI | MR | Zbl