On identities with polynomial coefficients
The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 56-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using methods of the generating functions and properties of Hadamars composition of multiple power series we get a series of identities with polynomial coefficients which are similar to identities of Daubeacheis–Zielberger–Egorychev.
Keywords: combinatorial sums, generating function, integral representation.
@article{IIGUM_2012_5_3_a4,
     author = {V. P. Krivokolesko and E. K. Leinartas},
     title = {On identities with polynomial coefficients},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {56--62},
     year = {2012},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a4/}
}
TY  - JOUR
AU  - V. P. Krivokolesko
AU  - E. K. Leinartas
TI  - On identities with polynomial coefficients
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2012
SP  - 56
EP  - 62
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a4/
LA  - ru
ID  - IIGUM_2012_5_3_a4
ER  - 
%0 Journal Article
%A V. P. Krivokolesko
%A E. K. Leinartas
%T On identities with polynomial coefficients
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2012
%P 56-62
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a4/
%G ru
%F IIGUM_2012_5_3_a4
V. P. Krivokolesko; E. K. Leinartas. On identities with polynomial coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 5 (2012) no. 3, pp. 56-62. http://geodesic.mathdoc.fr/item/IIGUM_2012_5_3_a4/

[1] L. Biberbakh, Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[2] G. P. Egorychev, “Kombinatornoe tozhdestvo iz teorii integralnykh predstavlenii v $\mathbb C^n $”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:4 (2011), 39–44

[3] V. P. Krivokolesko, “Integralnye predstavleniya v lineino vypuklykh poliedrakh i nekotorye kombinatornye tozhdestva”, Zhurn. SFU. Ser. Matematika i fizika, 2:2 (2009), 176–188

[4] V. P. Krivokolesko, A. K. Tsikh, “Integralnye predstavleniya v lineino vypuklykh poliedrakh”, Sib. mat. zhurn., 46:3 (2005), 579–593 | MR | Zbl

[5] E. K. Leinartas, “Mnogomernaya kompozitsiya Adamara i summy s lineinymi ogranicheniyami na indeksy summirovaniya”, Sib. mat. zhurn., 30:2 (1989), 102–107 | MR

[6] I. Ya. Novikov, S. B. Stechkin, “Osnovy teorii vspleskov”, UMN, 53:6(324) (1998), 53–128 | DOI | MR | Zbl

[7] V. M. Shelkovich, A. P. Yuzhakov, “Struktura odnogo klassa asimptoticheskikh raspredelenii V. K. Ivanova”, Izv. vuzov. Matem., 1991, no. 4, 70–73 | MR | Zbl

[8] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 528 pp. | MR

[9] I. Daubeacheis, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992 | MR

[10] D. Zielberger, “On an identity of Daubeachies”, Amer. Math. Monthly, 100 (1993), 487 | DOI | MR